English
Language : 

PIC18LF24K Datasheet, PDF (379/594 Pages) –
PIC18(L)F26/45/46K40
26.10.10 SLEEP OPERATION
While in Sleep mode, the I2C slave module can receive
addresses or data and when an address match or
complete byte transfer occurs, wake the processor
from Sleep (if the MSSP interrupt is enabled).
26.10.11 EFFECTS OF A RESET
A Reset disables the MSSP module and terminates the
current transfer.
26.10.12 MULTI-MASTER MODE
In Multi-Master mode, the interrupt generation on the
detection of the Start and Stop conditions allows the
determination of when the bus is free. The Stop (P) and
Start (S) bits are cleared from a Reset or when the
MSSP module is disabled. Control of the I2C bus may
be taken when the P bit of the SSPxSTAT register is
set, or the bus is Idle, with both the S and P bits clear.
When the bus is busy, enabling the SSP interrupt will
generate the interrupt when the Stop condition occurs.
In multi-master operation, the SDA line must be
monitored for arbitration to see if the signal level is the
expected output level. This check is performed by
hardware with the result placed in the BCLxIF bit.
The states where arbitration can be lost are:
• Address Transfer
• Data Transfer
• A Start Condition
• A Repeated Start Condition
• An Acknowledge Condition
26.10.13 MULTI -MASTER
COMMUNICATION, BUS COLLISION
AND BUS ARBITRATION
Multi-Master mode support is achieved by bus arbitra-
tion. When the master outputs address/data bits onto
the SDA pin, arbitration takes place when the master
outputs a ‘1’ on SDA, by letting SDA float high and
another master asserts a ‘0’. When the SCL pin floats
high, data should be stable. If the expected data on
SDA is a ‘1’ and the data sampled on the SDA pin is ‘0’,
then a bus collision has taken place. The master will set
the Bus Collision Interrupt Flag, BCLxIF and reset the
I2C port to its Idle state (Figure 26-32).
If a transmit was in progress when the bus collision
occurred, the transmission is halted, the BF flag is
cleared, the SDA and SCL lines are deasserted and the
SSPxBUF can be written to. When the user services
the bus collision Interrupt Service Routine and if the I2C
bus is free, the user can resume communication by
asserting a Start condition.
If a Start, Repeated Start, Stop or Acknowledge condi-
tion was in progress when the bus collision occurred, the
condition is aborted, the SDA and SCL lines are
deasserted and the respective control bits in the
SSPxCON2 register are cleared. When the user ser-
vices the bus collision Interrupt Service Routine and if
the I2C bus is free, the user can resume communication
by asserting a Start condition.
The master will continue to monitor the SDA and SCL
pins. If a Stop condition occurs, the SSPxIF bit will be set.
A write to the SSPxBUF will start the transmission of
data at the first data bit, regardless of where the
transmitter left off when the bus collision occurred.
In Multi-Master mode, the interrupt generation on the
detection of Start and Stop conditions allows the deter-
mination of when the bus is free. Control of the I2C bus
can be taken when the P bit is set in the SSPxSTAT
register, or the bus is Idle and the S and P bits are
cleared.
FIGURE 26-32:
BUS COLLISION TIMING FOR TRANSMIT AND ACKNOWLEDGE
Data changes
while SCL = 0
SDA line pulled low
by another source
SDA released
by master
Sample SDA. While SCL is high,
data does not match what is driven
by the master.
Bus collision has occurred.
SDA
SCL
BCLxIF
Set bus collision
interrupt (BCLxIF)
 2016 Microchip Technology Inc.
Preliminary
DS40001816C-page 379