English
Language : 

DRA722_17 Datasheet, PDF (357/408 Pages) Texas Instruments – Infotainment Applications Processor
www.ti.com
DRA722, DRA724, DRA725, DRA726
SPRS956B – MARCH 2016 – REVISED JANUARY 2017
Signal 1
GND Plane
Power Plane
Signal 2
SPRS906_PCB_USB20_02
Figure 8-22. Four-Layer Board Stack-Up
The majority of signal traces should run on a single layer, preferably SIGNAL1. Immediately next to this
layer should be the GND plane, which is solid with no cuts. Avoid running signal traces across a split in
the ground or power plane. When running across split planes is unavoidable, sufficient decoupling must
be used. Minimizing the number of signal vias reduces EMI by reducing inductance at high frequencies.
8.5.2.2.2.4 Cable Connector Socket
Short the cable connector sockets directly to a small chassis ground plane (GND strap) that exists
immediately underneath the connector sockets. This shorts EMI (and ESD) directly to the chassis ground
before it gets onto the USB cable. This etch plane should be as large as possible, but all the conductors
coming off connector pins 1 through 6 must have the board signal GND plane run under. If needed, scoop
out the chassis GND strap etch to allow for the signal ground to extend under the connector pins. Note
that the etches coming from pins 1 and 4 (VBUS power and GND) should be wide and via-ed to their
respective planes as soon as possible, respecting the filtering that may be in place between the connector
pin and the plane. See Figure 8-23 for a schematic example.
Place a ferrite in series with the cable shield pins near the USB connector socket to keep EMI from getting
onto the cable shield. The ferrite bead between the cable shield and ground may be valued between 10 Ω
and 50 Ω at 100 MHz; it should be resistive to approximately 1 GHz. To keep EMI from getting onto the
cable bus power wire (a very large antenna) a ferrite may be placed in series with cable bus power,
VBUS, near the USB connector pin 1. The ferrite bead between connector pin 1 and bus power may be
valued between 47 Ω and approximately 1000 Ω at 100 MHz. It should continue being resistive out to
approximately 1 GHz, as shown in Figure 8-23.
Copyright © 2016–2017, Texas Instruments Incorporated
Applications, Implementation, and Layout 357
Submit Documentation Feedback
Product Folder Links: DRA722 DRA724 DRA725 DRA726