English
Language : 

HD64F3437TF16 Datasheet, PDF (262/752 Pages) Hitachi Semiconductor – 12 V must not be applied to the S-mask model (single-power-supply specification), as this may permanently damage the device.
Section 12 Serial Communication Interface
12.1 Overview
The H8/3437 Series includes two serial communication interface channels (SCI0 and SCI1) for
transferring serial data to and from other chips. Either synchronous or asynchronous
communication can be selected.
12.1.1 Features
The features of the on-chip serial communication interface are:
• Asynchronous mode
The H8/3437 Series can communicate with a UART (Universal Asynchronous
Receiver/Transmitter), ACIA (Asynchronous Communication Interface Adapter), or other chip
that employs standard asynchronous serial communication. It also has a multiprocessor
communication function for communication with other processors. Twelve data formats are
available.
 Data length: 7 or 8 bits
 Stop bit length: 1 or 2 bits
 Parity: Even, odd, or none
 Multiprocessor bit: 1 or 0
 Error detection: Parity, overrun, and framing errors
 Break detection: When a framing error occurs, the break condition can be detected by
reading the level of the RxD line directly.
• Synchronous mode
The SCI can communicate with chips able to perform clocked synchronous data transfer.
 Data length: 8 bits
 Error detection: Overrun errors
• Full duplex communication
The transmitting and receiving sections are independent, so each channel can transmit and
receive simultaneously. Both the transmit and receive sections use double buffering, so
continuous data transfer is possible in either direction.
• Built-in baud rate generator
Any specified bit rate can be generated.
• Internal or external clock source
The SCI can operate on an internal clock signal from the baud rate generator, or an external
clock signal input at the SCK0 or SCK1 pin.
233