English
Language : 

C8051F93X Datasheet, PDF (118/330 Pages) Silicon Laboratories – Pipelined intstruction architecture executes 70 of instruction in 1 or 2 system clocks
C8051F93x-C8051F92x
10.4. Multiplexed External Memory Interface
For a Multiplexed external memory interface, the Data Bus and the lower 8-bits of the Address Bus share
the same Port pins: AD[7:0]. For most devices with an 8-bit interface, the upper address bits are not used
and can be used as GPIO if the external memory interface is used in 8-bit non-banked mode. If the
external memory interface is used in 8-bit banked mode, or 16-bit mode, then the address pins will be
driven with the upper 4 address bits and cannot be used as GPIO.
GPIO (4-bit)
LEDs/Switches
E A[11:8]
M
I
AD[7:0]
ADDRESS BUS (12-bit or 8-bit)
VDD
(Optional)
8
DATA BUS
Ethernet
Controller
(8-bit Interface)
AD[7:0]
F WR
CS
WR
RD
RD
ALE
ALE
Figure 10.1. Multiplexed Configuration Example
Many devices with a slave parallel memory interface, such as SRAM chips, only support a non-multiplexed
memory bus. When interfacing to such a device, an external latch (74HC373 or equivalent logic gate) can
be used to hold the lower 8-bits of the RAM address during the second half of the memory cycle when the
address/data bus contains data. The external latch, controlled by the ALE (Address Latch Enable) signal,
is automatically driven by the External Memory Interface logic. An example SRAM interface showing
multiplexed to non-multiplexed conversion is shown in Figure 10.2.
This example is showing that the external MOVX operation can be broken into two phases delineated by
the state of the ALE signal. During the first phase, ALE is high and the lower 8-bits of the Address Bus are
presented to AD[7:0]. During this phase, the address latch is configured such that the Q outputs reflect the
states of the D inputs. When ALE falls, signaling the beginning of the second phase, the address latch
outputs remain fixed and are no longer dependent on the latch inputs. Later in the second phase, the Data
Bus controls the state of the AD[7:0] port at the time RD or WR is asserted.
See Section “10.6. External Memory Interface Timing” on page 121 for detailed timing diagrams.
118
Rev. 1.3