English
Language : 

MC912D60ACPVE8 Datasheet, PDF (321/460 Pages) Freescale Semiconductor, Inc – MC68HC912D60A MC68HC912D60C MC68HC912D60P Technical Data
MSCAN Controller
Clock System
receives the frames being sent by itself, a timer signal is also generated
after a successful transmission.
The previously described timer signal can be routed into the on-chip
timer interface module (ECT). This signal is connected to the Timer n
Channel m input(1) under the control of the timer link enable (TLNKEN)
bit in the CMCR0.
After timer n has been programmed to capture rising edge events, it can
be used under software control to generate 16-bit time stamps which can
be stored with the received message.
17.10 Clock System
Figure 17-7 shows the structure of the msCAN12 clock generation
circuitry. With this flexible clocking scheme the msCAN12 is able to
handle CAN bus rates ranging from 10 kbps up to 1 Mbps.
SYSCLK
CGM
CLKSRC
msCAN12
CGMCANCLK
Time quanta
Prescaler
clock
(1...64)
EXTALi
CLKSRC
Figure 17-7. Clocking Scheme
The clock source bit (CLKSRC) in the msCAN12 module control register
(CMCR1) (see msCAN12 Bus Timing Register 0 (CBTR0)) defines
whether the msCAN12 is connected to the output of the crystal oscillator
(EXTALi) or to a clock twice as fast as the system clock (ECLK).
The clock source has to be chosen such that the tight oscillator tolerance
requirements (up to 0.4%) of the CAN protocol are met. Additionally, for
high CAN bus rates (1 Mbps), a 50% duty cycle of the clock is required.
1. The timer channel being used for the timer link is integration dependent.
MC68HC912D60A — Rev. 3.1
Freescale Semiconductor
MSCAN Controller
Technical Data
321