English
Language : 

MC68HC908AT32 Datasheet, PDF (167/378 Pages) Freescale Semiconductor, Inc – Microcontrollers
Transmission Formats
17.5.1 Clock Phase and Polarity Controls
Software can select any of four combinations of serial clock (SCK) phase and polarity using two bits in
the SPI control register (SPCR). The clock polarity is specified by the CPOL control bit, which selects an
active high or low clock and has no significant effect on the transmission format.
The clock phase (CPHA) control bit (SPCR) selects one of two fundamentally different transmission
formats. The clock phase and polarity should be identical for the master SPI device and the
communicating slave device. In some cases, the phase and polarity are changed between transmissions
to allow a master device to communicate with peripheral slaves having different requirements.
NOTE
Before writing to the CPOL bit or the CPHA bit (SPCR), disable the SPI by
clearing the SPI enable bit (SPE).
17.5.2 Transmission Format When CPHA = 0
Figure 17-4 shows an SPI transmission in which CPHA (SPCR) is logic 0. The figure should not be used
as a replacement for data sheet parametric information. Two waveforms are shown for SCK: one for
CPOL = 0 and another for CPOL = 1. The diagram may be interpreted as a master or slave timing
diagram since the serial clock (SCK), master in/slave out (MISO), and master out/slave in (MOSI) pins
are directly connected between the master and the slave. The MISO signal is the output from the slave,
and the MOSI signal is the output from the master. The SS line is the slave select input to the slave. The
slave SPI drives its MISO output only when its slave select input (SS) is at logic 0, so that only the selected
slave drives to the master. The SS pin of the master is not shown but is assumed to be inactive. The SS
pin of the master must be high or must be reconfigured as general-purpose I/O not affecting the SPI. (See
17.6.2 Mode Fault Error.) When CPHA = 0, the first SPSCK edge is the MSB capture strobe. Therefore,
the slave must begin driving its data before the first SPSCK edge, and a falling edge on the SS pin is used
to start the transmission. The SS pin must be toggled high and then low again between each byte
transmitted.
SCK CYCLE #
FOR REFERENCE
1
2
3
4
5
6
7
8
SCK CPOL = 0
SCK CPOL = 1
MOSI
FROM MASTER
MISO
FROM SLAVE
SS TO SLAVE
CAPTURE STROBE
MSB
BIT 6
BIT 5
BIT 4
BIT 3
BIT 2
BIT 1
LSB
MSB
BIT 6
BIT 5
BIT 4
BIT 3
BIT 2
BIT 1
LSB
Figure 17-4. Transmission Format (CPHA = 0)
MC68HC908AT32 Data Sheet, Rev. 3.1
Freescale Semiconductor
167