English
Language : 

MC68HC908AT32 Datasheet, PDF (106/378 Pages) Freescale Semiconductor, Inc – Microcontrollers
Clock Generator Module (CGM)
8.8 CGM during Break Interrupts
The BCFE bit in the break flag control register (BFCR) enables software to clear status bits during the
break state. See Chapter 11 Break Module (BRK).
To allow software to clear status bits during a break interrupt, write a logic 1 to the BCFE bit. If a status
bit is cleared during the break state, it remains cleared when the MCU exits the break state.
To protect the PLLF bit during the break state, write a logic 0 to the BCFE bit. With BCFE at logic 0 (its
default state), software can read and write the PLL control register during the break state without affecting
the PLLF bit.
8.9 Acquisition/Lock Time Specifications
The acquisition and lock times of the PLL are, in many applications, the most critical PLL design
parameters. Proper design and use of the PLL ensures the highest stability and lowest acquisition/lock
times.
8.9.1 Acquisition/Lock Time Definitions
Typical control systems refer to the acquisition time or lock time as the reaction time, within specified
tolerances, of the system to a step input. In a PLL, the step input occurs when the PLL is turned on or
when it suffers a noise hit. The tolerance is usually specified as a percent of the step input or when the
output settles to the desired value plus or minus a percent of the frequency change. Therefore, the
reaction time is constant in this definition, regardless of the size of the step input. For example, consider
a system with a 5 percent acquisition time tolerance. If a command instructs the system to change from
0 Hz to 1 MHz, the acquisition time is the time taken for the frequency to reach 1 MHz ±50 kHz.
Fifty kHz = 5% of the 1-MHz step input. If the system is operating at 1 MHz and suffers a –100 kHz noise
hit, the acquisition time is the time taken to return from 900 kHz to 1 MHz ±5 kHz. Five kHz = 5% of the
100-kHz step input.
Other systems refer to acquisition and lock times as the time the system takes to reduce the error between
the actual output and the desired output to within specified tolerances. Therefore, the acquisition or lock
time varies according to the original error in the output. Minor errors may not even be registered. Typical
PLL applications prefer to use this definition because the system requires the output frequency to be
within a certain tolerance of the desired frequency regardless of the size of the initial error.
The discrepancy in these definitions makes it difficult to specify an acquisition or lock time for a typical
PLL. Therefore, the definitions for acquisition and lock times for this module are:
• Acquisition time, tACQ, is the time the PLL takes to reduce the error between the actual output
frequency and the desired output frequency to less than the tracking mode entry tolerance, ∆TRK.
Acquisition time is based on an initial frequency error, (fDES – fORIG)/fDES, of not more than ±100
percent. In automatic bandwidth control mode (see 8.3.2.3 Manual and Automatic PLL Bandwidth
Modes), acquisition time expires when the ACQ bit becomes set in the PLL bandwidth control
register (PBWC).
• Lock time, tLock, is the time the PLL takes to reduce the error between the actual output frequency
and the desired output frequency to less than the lock mode entry tolerance, ∆Lock. Lock time is
based on an initial frequency error, (fDES – fORIG)/fDES, of not more than ±100 percent. In automatic
bandwidth control mode, lock time expires when the LOCK bit becomes set in the PLL bandwidth
control register (PBWC). See 8.3.2.3 Manual and Automatic PLL Bandwidth Modes.
MC68HC908AT32 Data Sheet, Rev. 3.1
106
Freescale Semiconductor