English
Language : 

XC3S5000-5FGG676C Datasheet, PDF (12/272 Pages) Xilinx, Inc – Introduction and Ordering Information
Spartan-3 FPGA Family: Functional Description
According to Figure 7, the clock line OTCLK1 connects the CK inputs of the upper registers on the output and three-state
paths. Similarly, OTCLK2 connects the CK inputs for the lower registers on the output and three-state paths. The upper and
lower registers on the input path have independent clock lines: ICLK1 and ICLK2. The enable line OCE connects the CE
inputs of the upper and lower registers on the output path. Similarly, TCE connects the CE inputs for the register pair on the
three-state path and ICE does the same for the register pair on the input path. The Set/Reset (SR) line entering the IOB is
common to all six registers, as is the Reverse (REV) line.
Each storage element supports numerous options in addition to the control over signal polarity described in the IOB
Overview section. These are described in Table 6.
Table 6: Storage Element Options
Option Switch
Function
Specificity
FF/Latch
Chooses between an edge-sensitive flip-flop or a
level-sensitive latch
Independent for each storage element.
SYNC/ASYNC
Determines whether SR is synchronous or
asynchronous
Independent for each storage element.
SRHIGH/SRLOW Determines whether SR acts as a Set, which forces the Independent for each storage element, except when using
storage element to a logic “1" (SRHIGH) or a Reset, FDDR. In the latter case, the selection for the upper
which forces a logic “0” (SRLOW).
element (OFF1 or TFF2) applies to both elements.
INIT1/INIT0
In the event of a Global Set/Reset, after configuration
or upon activation of the GSR net, this switch decides
whether to set or reset a storage element. By default,
choosing SRLOW also selects INIT0; choosing
SRHIGH also selects INIT1.
Independent for each storage element, except when using
FDDR. In the latter case, selecting INIT0 for one element
applies to both elements (even though INIT1 is selected
for the other).
Double-Data-Rate Transmission
Double-Data-Rate (DDR) transmission describes the technique of synchronizing signals to both the rising and falling edges
of the clock signal. Spartan-3 devices use register-pairs in all three IOB paths to perform DDR operations.
The pair of storage elements on the IOB’s Output path (OFF1 and OFF2), used as registers, combine with a special
multiplexer to form a DDR D-type flip-flop (FDDR). This primitive permits DDR transmission where output data bits are
synchronized to both the rising and falling edges of a clock. It is possible to access this function by placing either an
FDDRRSE or an FDDRCPE component or symbol into the design. DDR operation requires two clock signals (50% duty
cycle), one the inverted form of the other. These signals trigger the two registers in alternating fashion, as shown in Figure 8.
Commonly, the Digital Clock Manager (DCM) generates the two clock signals by mirroring an incoming signal, then shifting
it 180 degrees. This approach ensures minimal skew between the two signals.
The storage-element-pair on the Three-State path (TFF1 and TFF2) can also be combined with a local multiplexer to form
an FDDR primitive. This permits synchronizing the output enable to both the rising and falling edges of a clock. This DDR
operation is realized in the same way as for the output path.
The storage-element-pair on the input path (IFF1 and IFF2) allows an I/O to receive a DDR signal. An incoming DDR clock
signal triggers one register and the inverted clock signal triggers the other register. In this way, the registers take turns
capturing bits of the incoming DDR data signal.
DS099 (v3.1) June 27, 2013
www.xilinx.com
Product Specification
12