English
Language : 

M1AFS600-PQ208 Datasheet, PDF (88/334 Pages) Microsemi Corporation – Fusion Family of Mixed Signal FPGAs
Device Architecture
The following signals are used to configure the FIFO4K18 memory element:
WW and RW
These signals enable the FIFO to be configured in one of the five allowable aspect ratios (Table 2-33).
Table 2-33 • Aspect Ratio Settings for WW[2:0]
WW2, WW1, WW0
RW2, RW1, RW0
D×W
000
000
4k×1
001
001
2k×2
010
010
1k×4
011
011
512×9
100
100
256×18
101, 110, 111
101, 110, 111
Reserved
WBLK and RBLK
These signals are active low and will enable the respective ports when Low. When the RBLK signal is
High, the corresponding port’s outputs hold the previous value.
WEN and REN
Read and write enables. WEN is active low and REN is active high by default. These signals can be
configured as active high or low.
WCLK and RCLK
These are the clock signals for the synchronous read and write operations. These can be driven
independently or with the same driver.
RPIPE
This signal is used to specify pipelined read on the output. A Low on RPIPE indicates a nonpipelined
read, and the data appears on the output in the same clock cycle. A High indicates a pipelined read, and
data appears on the output in the next clock cycle.
RESET
This active low signal resets the output to zero when asserted. It resets the FIFO counters. It also sets all
the RD pins Low, the FULL and AFULL pins Low, and the EMPTY and AEMPTY pins High (Table 2-34).
Table 2-34 • Input Data Signal Usage for Different Aspect Ratios
D×W
WD/RD Unused
4k×1
WD[17:1], RD[17:1]
2k×2
WD[17:2], RD[17:2]
1k×4
WD[17:4], RD[17:4]
512×9
WD[17:9], RD[17:9]
256×18
–
WD
This is the input data bus and is 18 bits wide. Not all 18 bits are valid in all configurations. When a data
width less than 18 is specified, unused higher-order signals must be grounded (Table 2-34).
RD
This is the output data bus and is 18 bits wide. Not all 18 bits are valid in all configurations. Like the WD
bus, high-order bits become unusable if the data width is less than 18. The output data on unused pins is
undefined (Table 2-34).
ESTOP, FSTOP
ESTOP is used to stop the FIFO read counter from further counting once the FIFO is empty (i.e., the
EMPTY flag goes High). A High on this signal inhibits the counting.
2-72
Revision 4