English
Language : 

HD6475348R Datasheet, PDF (108/487 Pages) Hitachi Semiconductor – Single-Chip Microcomputer
H'7FFF). If the CPU excutes an instruction in these addresses, it will attempt to prefetch the next
instruction from addresses H'8000 to H'8002, causing an address error.
Access to Disabled RAM Area: The on-chip RAM area (H'F680 to H'FE7F) can be disabled by
clearing the RAME bit in the RAM control register (RAMCR). If any form of RAM access is
attempted in this state in the single-chip mode, an address error occurs.
4.4 Trace
When the T bit of the status register is set to 1, the CPU operates in trace mode. A trace exception
occurs at the completion of each instruction. The trace mode can be used to execute a program for
debugging by a debugger.
In the trace exception sequence the T bit of the status register is cleared to 0 to disable the trace
mode while the trace routine is executing. The interrupt mask level in bits I2 to I0 is not changed.
Interrupts are accepted as usual during the trace routine.
In the status-register data saved on the stack, the T bit is set to 1. When the trace routine returns
with the RTE instruction, the status register is popped from the stack and the trace mode resumes.
If an address error occurs during execution of the first instruction after the return from the trace
routine, since the address error has higher priority, the address error exception-handling sequence
is initiated, clearing the T bit in the status register to 0 and making it impossible to trace this
instruction.
4.5 Interrupts
Interrupts can be requested from seven external sources (NMI, IRQ0, and IRQ1 to IRQ5) and eight
on-chip supporting modules: the 16-bit free-running timers (FRT1 to FRT3), the 8-bit timer, the
serial communication interfaces (SCI1 and SCI2), the A/D converter, and the watchdog timer
(WDT). The on-chip interrupt sources can request a total of nineteen different types of interrupts,
each having its own interrupt vector. Figure 4-5 lists the interrupt sources and the number of
different interrupts from each source.
Each interrupt source has a priority. NMI interrupts have the highest priority, and are normally
accepted unconditionally. The priorities of the other interrupt sources are set in control registers
(IPR A to D) in the register field at the high end of page 0 and can be changed by software.
Priority levels range from 0 (low) to 7 (high), with NMI considered to be on level 8. IRQ0 and
IRQ1 can be prioritized individually. IRQ2 and IRQ3 are prioritized as a pair. IRQ4 and IRQ5 are
also prioritized as a pair. The on-chip supporting modules are prioritized as modules.
88