English
Language : 

MC68HC908GR16 Datasheet, PDF (209/310 Pages) Motorola, Inc – Microcontrollers
Freescale Semiconductor, Inc.
System Integration Module (SIM)
Low-Power Modes
15.5.2 Reset
All reset sources always have equal and highest priority and cannot be arbitrated.
15.5.3 Break Interrupts
The break module can stop normal program flow at a software-programmable
break point by asserting its break interrupt output (see Section 18. Timer
Interface Module (TIM)). The SIM puts the CPU into the break state by forcing it
to the SWI vector location. Refer to the break interrupt subsection of each module
to see how each module is affected by the break state.
15.5.4 Status Flag Protection in Break Mode
The SIM controls whether status flags contained in other modules can be cleared
during break mode. The user can select whether flags are protected from being
cleared by properly initializing the break clear flag enable bit (BCFE) in the SIM
break flag control register (SBFCR).
Protecting flags in break mode ensures that set flags will not be cleared while in
break mode. This protection allows registers to be freely read and written during
break mode without losing status flag information.
Setting the BCFE bit enables the clearing mechanisms. Once cleared in break
mode, a flag remains cleared even when break mode is exited. Status flags with a
2-step clearing mechanism — for example, a read of one register followed by the
read or write of another — are protected, even when the first step is accomplished
prior to entering break mode. Upon leaving break mode, execution of the second
step will clear the flag as normal.
15.6 Low-Power Modes
Executing the WAIT or STOP instruction puts the MCU in a low
power-consumption mode for standby situations. The SIM holds the CPU in a
non-clocked state. The operation of each of these modes is described in the
following subsections. Both STOP and WAIT clear the interrupt mask (I) in the
condition code register, allowing interrupts to occur.
15.6.1 Wait Mode
In wait mode, the CPU clocks are inactive while the peripheral clocks continue to
run. Figure 15-16 shows the timing for wait mode entry.
A module that is active during wait mode can wakeup the CPU with an interrupt if
the interrupt is enabled. Stacking for the interrupt begins one cycle after the WAIT
instruction during which the interrupt occurred. In wait mode, the CPU clocks are
inactive. Refer to the wait mode subsection of each module to see if the module is
MC68HC908GR16 — Rev. 1.0
MOTOROLA
System Integration Module (SIM)
For More Information On This Product,
Go to: www.freescale.com
Data Sheet
209