English
Language : 

PIC18F87K22 Datasheet, PDF (389/548 Pages) Microchip Technology – 64/80-Pin, High-Performance, 1-Mbit Enhanced Flash Microcontrollers with 12-Bit A/D and nanoWatt XLP Technology
PIC18F87K22 FAMILY
The CTMU current source may be trimmed with the
trim bits in CTMUICON using an iterative process to get
the exact current desired. Alternatively, the nominal
value without adjustment may be used. That value may
be stored by software, for use in all subsequent
capacitive or time measurements.
To calculate the value for RCAL, the nominal current
must be chosen. Then, the resistance can be
calculated.
For example, if the A/D Converter reference voltage is
3.3V, use 70% of full scale (or 2.31V) as the desired
approximate voltage to be read by the A/D Converter. If
the range of the CTMU current source is selected to be
0.55 A, the resistor value needed is calculated as
RCAL = 2.31V/0.55 A, for a value of 4.2 MΩ. Similarly,
if the current source is chosen to be 5.5 A, RCAL would
be 420,000Ω, and 42,000Ω if the current source is set
to 55 A.
FIGURE 27-2:
CTMU CURRENT SOURCE
CALIBRATION CIRCUIT
PIC18F87K22
Current Source CTMU
A value of 70% of full-scale voltage is chosen to make
sure that the A/D Converter was in a range that is well
above the noise floor. If an exact current is chosen to
incorporate the trimming bits from CTMUICON, the
resistor value of RCAL may need to be adjusted accord-
ingly. RCAL also may be adjusted to allow for available
resistor values. RCAL should be of the highest precision
available, in light of the precision needed for the circuit
that the CTMU will be measuring. A recommended
minimum would be 0.1% tolerance.
The following examples show a typical method for
performing a CTMU current calibration.
• Example 27-1 demonstrates how to initialize the
A/D Converter and the CTMU.
This routine is typical for applications using both
modules.
• Example 27-2 demonstrates one method for the
actual calibration routine.
This method manually triggers the A/D Converter to
demonstrate the entire step-wise process. It is also
possible to automatically trigger the conversion by
setting the CTMU’s CTTRIG bit (CTMUCONH<0>).
ANx
RCAL
A/D
Trigger
A/D Converter
A/D
MUX
 2010 Microchip Technology Inc.
Preliminary
DS39960B-page 389