English
Language : 

GMS30C2116 Datasheet, PDF (21/322 Pages) Hynix Semiconductor – USERS MANUAL
ARCHITECTURE
1-1
1. Architecture
1.1 Introduction
1.1.1 RISC Architecture
In the early days of computer history, most computer families started with an instruction
set which was rather simple. The main reason for being simple then was the high cost for
hardware. The hardware cost has dropped and the software cost has gone up steadily in the
past three decades.
The net result is that more and more functions have been built into the hardware, making
the instruction set very large and very complex. The growth of instruction sets was also
encouraged by the popularity of microprogrammed control in the 1960s and 1970s. Even
user-defined instruction sets were implemented using microcodes in some processors for
special-purpose applications.
The evolution of computer architectures has been dominated by families of increasingly
complex processors. Under market pressures to preserve existing software, Complex
Instruction Set Computer (CISC) architectures evolved by the gradual addition of
microcode and increasingly elaborate operations. The intent was to supply more support
for high-level languages and operating systems, as semiconductor advances made it
possible to fabricate more complex integrated circuits. It seemed self-evident that
architectures should become more complex as these technological advances made it
possible to hold more complexity on VLSI devices.
In recent years, however, Reduced Instruction Set Computer (RISC) architectures have
implemented a much more sophisticated handling of the complex interaction between
hardware, firmware and software. RISC concepts emerged from statistical analysis of how
software actually uses the resources of a processor. Dynamic measurement of system
kernels and object modules generated by optimizing compilers show an overwhelming
predominance of the simplest instruction, even in the code for CISC machine. Complex
instructions are often ignored because a single way of performing a complex operation
needs of high-level language and system environments. RISC designs eliminate the
microcoded routines and turn the low-level control of the machine over to software.
This approach is not new. But its application is more universal in recent years thanks to the
prevalence of high-level languages, the development of compilers that can optimize at the
microcode level, and dramatic advances in semiconductor memory and packaging. It is
now feasible to replace machine microcode ROM with faster RAM, organized as an
instruction cache. Machine control then resides in the instruction cache and is, in fact,
customized on the fly. The instruction stream generated by system- and compiler-generated
code provides a precise fit between the requirements of high-level software and the
capabilities of the hardware. So compilers are playing a vital role in RISC performance.
The advantage of RISC architecture is described as follows:
l Simplicity made VLSI implementation possible and thus higher clock rates.
l Hardwired control and separated data and program caches lower the average CPI
(Cycles per Instruction) significantly.
l Dynamic instruction count in a RISC program only increased slightly (less than 2) in
ordinary program.