English
Language : 

MC68HC908GT16 Datasheet, PDF (206/412 Pages) Motorola, Inc – Microcontrollers
Low-Voltage Inhibit (LVI)
14.4.1 Polled LVI Operation
In applications that can operate at VDD levels below the VTRIPF level,
software can monitor VDD by polling the LVIOUT bit. In the configuration
register, the LVIPWRD bit must be at logic 0 to enable the LVI module,
and the LVIRSTD bit must be at logic 1 to disable LVI resets.
14.4.2 Forced Reset Operation
In applications that require VDD to remain above the VTRIPF level,
enabling LVI resets allows the LVI module to reset the MCU when VDD
falls below the VTRIPF level. In the configuration register, the LVIPWRD
and LVIRSTD bits must be at logic 0 to enable the LVI module and to
enable LVI resets.
14.4.3 Voltage Hysteresis Protection
Once the LVI has triggered (by having VDD fall below VTRIPF), the LVI
will maintain a reset condition until VDD rises above the rising trip point
voltage, VTRIPR. This prevents a condition in which the MCU is
continually entering and exiting reset if VDD is approximately equal to
VTRIPF. VTRIPR is greater than VTRIPF by the hysteresis voltage, VHYS.
14.4.4 LVI Trip Selection
The LVI5OR3 bit in the configuration register selects whether the LVI is
configured for 5-V or 3-V protection.
NOTE:
The microcontroller is guaranteed to operate at a minimum supply
voltage. The trip point (VTRIPF [5 V] or VTRIPF [3 V]) may be lower than
this. (See Section 23. Electrical Specifications for the actual trip point
voltages.)
Technical Data
206
MC68HC908GT16 • MC68HC908GT8 — Rev. 2
Low-Voltage Inhibit (LVI)
MOTOROLA