English
Language : 

MC68HC908AS32A Datasheet, PDF (213/280 Pages) Freescale Semiconductor, Inc – Microcontrollers
Error Conditions
16.6 Error Conditions
Two flags signal SPI error conditions:
1. Overflow (OVRF in SPSCR) — Failing to read the SPI data register before the next byte enters the
shift register sets the OVRF bit. The new byte does not transfer to the receive data register, and
the unread byte still can be read by accessing the SPI data register. OVRF is in the SPI status and
control register.
2. Mode fault error (MODF in SPSCR) — The MODF bit indicates that the voltage on the slave select
pin (SS) is inconsistent with the mode of the SPI. MODF is in the SPI status and control register.
16.6.1 Overflow Error
The overflow flag (OVRF in SPSCR) becomes set if the SPI receive data register still has unread data
from a previous transmission when the capture strobe of bit 1 of the next transmission occurs. (See
Figure 16-4 and Figure 16-5.) If an overflow occurs, the data being received is not transferred to the
receive data register so that the unread data can still be read. Therefore, an overflow error always
indicates the loss of data.
OVRF generates a receiver/error CPU interrupt request if the error interrupt enable bit (ERRIE in SPSCR)
is also set. MODF and OVRF can generate a receiver/error CPU interrupt request (see Figure 16-9). It is
not possible to enable only MODF or OVRF to generate a receiver/error CPU interrupt request. However,
leaving MODFEN low prevents MODF from being set.
If an end-of-block transmission interrupt was meant to pull the MCU out of wait, having an overflow
condition without overflow interrupts enabled causes the MCU to hang in wait mode. If the OVRF is
enabled to generate an interrupt, it can pull the MCU out of wait mode instead.
If the CPU SPRF interrupt is enabled and the OVRF interrupt is not, watch for an overflow condition.
Figure 16-7 shows how it is possible to miss an overflow.
The first part of Figure 16-7 shows how to read the SPSCR and SPDR to clear the SPRF without
problems. However, as illustrated by the second transmission example, the OVRF flag can be set in
between the time that SPSCR and SPDR are read.
In this case, an overflow can be easily missed. Since no more SPRF interrupts can be generated until this
OVRF is serviced, it will not be obvious that bytes are being lost as more transmissions are completed.
To prevent this, either enable the OVRF interrupt or do another read of the SPSCR after the read of the
SPDR. This ensures that the OVRF was not set before the SPRF was cleared and that future
transmissions will complete with an SPRF interrupt. Figure 16-8 illustrates this process. Generally, to
avoid this second SPSCR read, enable the OVRF to the CPU by setting the ERRIE bit (SPSCR).
MC68HC908AS32A Data Sheet, Rev. 2.0
Freescale Semiconductor
213