English
Language : 

PIC18F2331 Datasheet, PDF (220/396 Pages) Microchip Technology – 28/40/44-Pin Enhanced Flash Microcontrollers with nanoWatt Technology, High Performance PWM and A/D
PIC18F2331/2431/4331/4431
18.3.1.1 Addressing
Once the SSP module has been enabled, it waits for a
Start condition to occur. Following the Start condition,
the 8-bits are shifted into the SSPSR register. All
incoming bits are sampled with the rising edge of the
clock (SCL) line. The value of register SSPSR<7:1> is
compared to the value of the SSPADD register. The
address is compared on the falling edge of the eighth
clock (SCL) pulse. If the addresses match, and the BF
and SSPOV bits are clear, the following events occur:
a) The SSPSR register value is loaded into the
SSPBUF register.
b) The buffer full bit, BF is set.
c) An ACK pulse is generated.
d) SSP interrupt flag bit, SSPIF (PIR1<3>), is set
(interrupt is generated if enabled) on the falling
edge of the ninth SCL pulse.
In 10-bit Address mode, two address bytes need to be
received by the slave (Figure 18-7). The five Most
Significant bits (MSbs) of the first address byte specify
if this is a 10-bit address. Bit R/W (SSPSTAT<2>) must
specify a write so the slave device will receive the
second address byte. For a 10-bit address, the first
byte would equal ‘1111 0 A9 A8 0’, where A9 and
A8 are the two MSbs of the address.
The sequence of events for 10-bit address is as
follows, with steps 7-9 for slave-transmitter:
1. Receive first (high) byte of address (bits SSPIF,
BF, and bit UA (SSPSTAT<1>) are set).
2. Update the SSPADD register with second (low)
byte of address (clears bit UA and releases the
SCL line).
3. Read the SSPBUF register (clears bit BF) and
clear flag bit SSPIF.
4. Receive second (low) byte of address (bits
SSPIF, BF and UA are set).
5. Update the SSPADD register with the first (high)
byte of address. If match releases SCL line, this
will clear bit UA.
6. Read the SSPBUF register (clears bit BF) and
clear flag bit SSPIF.
7. Receive Repeated Start condition.
8. Receive first (high) byte of address (bits SSPIF
and BF are set).
9. Read the SSPBUF register (clears bit BF) and
clear flag bit SSPIF.
TABLE 18-2: DATA TRANSFER RECEIVED BYTE ACTIONS
Status Bits as Data
Transfer is Received
BF
SSPOV
SSPSR → SSPBUF
Generate ACK
Pulse
Set bit SSPIF
(SSP Interrupt occurs
if enabled)
0
1
1
0
Note:
0
Yes
Yes
Yes
0
No
No
Yes
1
No
No
Yes
1
No
No
Yes
Shaded cells show the conditions where the user software did not properly clear the overflow condition.
18.3.1.2 Reception
When the R/W bit of the address byte is clear and an
address match occurs, the R/W bit of the SSPSTAT
register is cleared. The received address is loaded into
the SSPBUF register.
When the address byte overflow condition exists, then
no Acknowledge (ACK) pulse is given. An overflow
condition is defined as either bit BF (SSPSTAT<0>) is
set, or bit SSPOV (SSPCON<6>) is set. This is an error
condition due to the user’s firmware.
An SSP interrupt is generated for each data transfer
byte. Flag bit, SSPIF (PIR1<3>), must be cleared in
software. The SSPSTAT register is used to determine
the status of the byte.
DS39616B-page 218
Preliminary
 2003 Microchip Technology Inc.