English
Language : 

PIC18F2331 Datasheet, PDF (158/396 Pages) Microchip Technology – 28/40/44-Pin Enhanced Flash Microcontrollers with nanoWatt Technology, High Performance PWM and A/D
PIC18F2331/2431/4331/4431
15.5 PWM Mode
In Pulse Width Modulation (PWM) mode, the CCP1 pin
produces up to a 10-bit resolution PWM output. Since
the CCP1 pin is multiplexed with the PORTC data latch,
the TRISC<2> bit must be cleared to make the CCP1
pin an output.
Note:
Clearing the CCP1CON register will force
the CCP1 PWM output latch to the default
low level. This is not the PORTC I/O data
latch.
Figure 15-3 shows a simplified block diagram of the
CCP module in PWM mode.
For a step-by-step procedure on how to set up the CCP
module for PWM operation, see Section 15.5.3
“Setup for PWM Operation”.
FIGURE 15-3:
SIMPLIFIED PWM BLOCK
DIAGRAM
Duty Cycle Registers
CCPR1L
CCP1CON<5:4>
CCPR1H (Slave)
Comparator
TMR2
(Note 1)
RQ
S
RC2/CCP1
Comparator
PR2
Clear Timer,
CCP1 pin and
latch D.C.
TRISC<2>
Note: 8-bit timer is concatenated with 2-bit internal Q clock or
2 bits of the prescaler to create 10-bit time base.
A PWM output (Figure 15-4) has a time base
(period) and a time that the output is high (duty
cycle). The frequency of the PWM is the inverse of
the period (1/period).
FIGURE 15-4:
PWM OUTPUT
Period
15.5.1 PWM PERIOD
The PWM period is specified by writing to the PR2
register. The PWM period can be calculated using the
following equation.
EQUATION 15-1:
PWM period = [(PR2) + 1] • 4 • TOSC •
(TMR2 prescale value)
PWM frequency is defined as 1/[PWM period]. When
TMR2 is equal to PR2, the following three events occur
on the next increment cycle:
• TMR2 is cleared
• The CCP1 pin is set (if PWM duty cycle = 0%, the
CCP1 pin will not be set)
• The PWM duty cycle is copied from CCPR1L into
CCPR1H
Note:
The Timer2 postscaler (see Section 13.0
“Timer2 Module”) is not used in the deter-
mination of the PWM frequency. The
postscaler could be used to have a servo
update rate at a different frequency than
the PWM output.
15.5.2 PWM DUTY CYCLE
The PWM duty cycle is specified by writing to the
CCPR1L register and to the CCP1CON<5:4> bits. Up
to 10-bit resolution is available. The CCPR1L contains
the eight MSbs and the CCP1CON<5:4> contains the
two LSbs. This 10-bit value is represented by
CCPR1L:CCP1CON<5:4>. The PWM duty cycle is
calculated by the following equation.
EQUATION 15-2:
PWM duty cycle = (CCPR1L:CCP1CON<5:4>) •
Tosc • (TMR2 prescale value)
CCPR1L and CCP1CON<5:4> can be written to at any
time, but the duty cycle value is not copied into
CCPR1H until a match between PR2 and TMR2 occurs
(i.e., the period is complete). In PWM mode, CCPR1H
is a read-only register.
Duty Cycle
TMR2 = PR2
TMR2 = Duty Cycle
TMR2 = PR2
DS39616B-page 156
Preliminary
 2003 Microchip Technology Inc.