English
Language : 

MEGA128CAN Datasheet, PDF (331/413 Pages) ATMEL Corporation – Microcontroller WITH 128K BYTES OF ISP FLASH AND CAN CONTROLLER
AT90CAN128
Parallel Programming
Enter Programming Mode
Considerations for
Efficient Programming
Chip Erase
Programming the Flash
The following algorithm puts the device in parallel programming mode:
1. Apply 4.5 - 5.5V between VCC and GND.
2. Set RESET to “0” and toggle XTAL1 at least six times.
3. Set the Prog_enable pins listed in Table 128 on page 330 to “0000” and wait at
least 100 ns.
4. Apply 11.5 - 12.5V to RESET. Any activity on Prog_enable pins within 100 ns
after +12V has been applied to RESET, will cause the device to fail entering pro-
gramming mode.
5. Wait at least 50 µs before sending a new command.
The loaded command and address are retained in the device during programming. For
efficient programming, the following should be considered.
• The command needs only be loaded once when writing or reading multiple memory
locations.
• Skip writing the data value 0xFF, that is the contents of the entire EEPROM (unless
the EESAVE Fuse is programmed) and Flash after a Chip Erase.
• Address high byte needs only be loaded before programming or reading a new 256
word window in Flash or 256 byte EEPROM. This consideration also applies to
Signature bytes reading.
The Chip Erase will erase the Flash and EEPROM(1) memories plus Lock bits. The Lock
bits are not reset until the program memory has been completely erased. The Fuse bits
are not changed. A Chip Erase must be performed before the Flash and/or EEPROM
are reprogrammed.
Note: 1. The EEPRPOM memory is preserved during Chip Erase if the EESAVE Fuse is
programmed.
Load Command “Chip Erase”
1. Set XA1, XA0 to “10”. This enables command loading.
2. Set BS1 to “0”.
3. Set DATA to “1000 0000”. This is the command for Chip Erase.
4. Give XTAL1 a positive pulse. This loads the command.
5. Give WR a negative pulse. This starts the Chip Erase. RDY/BSY goes low.
6. Wait until RDY/BSY goes high before loading a new command.
The Flash is organized in pages, see Table 131 on page 330. When programming the
Flash, the program data is latched into a page buffer. This allows one page of program
data to be programmed simultaneously. The following procedure describes how to pro-
gram the entire Flash memory:
A. Load Command “Write Flash”
1. Set XA1, XA0 to “10”. This enables command loading.
2. Set BS1 to “0”.
3. Set DATA to “0001 0000”. This is the command for Write Flash.
4. Give XTAL1 a positive pulse. This loads the command.
B. Load Address Low byte
4250E–CAN–12/04
331