English
Language : 

MEGA128CAN Datasheet, PDF (203/413 Pages) ATMEL Corporation – Microcontroller WITH 128K BYTES OF ISP FLASH AND CAN CONTROLLER
AT90CAN128
same time should not be detectable to the slaves, i.e., the data being transferred on
the bus must not be corrupted.
• Different masters may use different SCL frequencies. A scheme must be devised to
synchronize the serial clocks from all masters, in order to let the transmission
proceed in a lockstep fashion. This will facilitate the arbitration process.
The wired-ANDing of the bus lines is used to solve both these problems. The serial
clocks from all masters will be wired-ANDed, yielding a combined clock with a high
period equal to the one from the master with the shortest high period. The low period of
the combined clock is equal to the low period of the master with the longest low period.
Note that all masters listen to the SCL line, effectively starting to count their SCL high
and low time-out periods when the combined SCL line goes high or low, respectively.
Figure 96. SCL Synchronization between Multiple Masters
TA low
TA high
SCL from
master A
SCL from
master B
SCL Bus
Line
TBlow
Masters Start
Counting Low Period
TBhigh
Masters Start
Counting High Period
Arbitration is carried out by all masters continuously monitoring the SDA line after out-
putting data. If the value read from the SDA line does not match the value the master
had output, it has lost the arbitration. Note that a master can only lose arbitration when it
outputs a high SDA value while another master outputs a low value. The losing master
should immediately go to slave mode, checking if it is being addressed by the winning
master. The SDA line should be left high, but losing masters are allowed to generate a
clock signal until the end of the current data or address packet. Arbitration will continue
until only one master remains, and this may take many bits. If several masters are trying
to address the same slave, arbitration will continue into the data packet.
4250E–CAN–12/04
203