English
Language : 

PIC18F6525_13 Datasheet, PDF (225/400 Pages) Microchip Technology – 64/80-Pin High-Performance, 64-Kbyte Enhanced Flash Microcontrollers with A/D
PIC18F6525/6621/8525/8621
19.2.4 AUTO-WAKE-UP ON SYNC BREAK
CHARACTER
During Sleep mode, all clocks to the EUSART are
suspended. Because of this, the Baud Rate Generator
is inactive and a proper byte reception cannot be
performed. The Auto-Wake-up feature allows the con-
troller to wake-up due to activity on the RXx/DTx line,
while the EUSART is operating in Asynchronous mode.
The Auto-Wake-up feature is enabled by setting the
WUE bit (BAUDCONx<1>). Once set, the typical receive
sequence on RXx/DTx is disabled and the EUSART
remains in an Idle state, monitoring for a wake-up event
independent of the CPU mode. A wake-up event
consists of a high-to-low transition on the RXx/DTx line.
(This coincides with the start of a Sync Break or a
Wake-up Signal character for the LIN protocol.)
Following a wake-up event, the module generates an
RC1IF interrupt. The interrupt is generated synchro-
nously to the Q clocks in normal operating modes
(Figure 19-7) and asynchronously, if the device is in
Sleep mode (Figure 19-8). The interrupt condition is
cleared by reading the RCREGx register.
The WUE bit is automatically cleared once a low-to-high
transition is observed on the RXx line following the
wake-up event. At this point, the EUSART module is in
Idle mode and returns to normal operation. This signals
to the user that the Sync Break event is over.
19.2.4.1 Special Considerations Using
Auto-Wake-up
Since auto-wake-up functions by sensing rising edge
transitions on RXx/DTx, information with any state
changes before the Stop bit may signal a false end-of-
character and cause data or framing errors. To work
properly, therefore, the initial character in the trans-
mission must be all ‘0’s. This can be 00h (8 bytes) for
standard RS-232 devices, or 000h (12 bits) for LIN bus.
Oscillator start-up time must also be considered,
especially in applications using oscillators with longer
start-up intervals (i.e., XT or HS mode). The Sync
Break (or Wake-up Signal) character must be of suffi-
cient length and be followed by a sufficient interval to
allow enough time for the selected oscillator to start
and provide proper initialization of the EUSART.
19.2.4.2 Special Considerations Using
the WUE Bit
The timing of WUE and RCxIF events may cause some
confusion when it comes to determining the validity of
received data. As noted, setting the WUE bit places the
EUSART in an Idle mode. The wake-up event causes
a receive interrupt by setting the RCxIF bit. The WUE
bit is cleared after this when a rising edge is seen on
RXx/DTx. The interrupt condition is then cleared by
reading the RCREGx register. Ordinarily, the data in
RCREGx will be dummy data and should be discarded.
The fact that the WUE bit has been cleared (or is still
set) and the RCxIF flag is set should not be used as an
indicator of the integrity of the data in RCREGx. Users
should consider implementing a parallel method in
firmware to verify received data integrity.
To assure that no actual data is lost, check the RCIDL
bit to verify that a receive operation is not in process. If
a receive operation is not occurring, the WUE bit may
then be set just prior to entering the Sleep mode.
FIGURE 19-7:
AUTO-WAKE-UP BIT (WUE) TIMINGS DURING NORMAL OPERATION
OSC1
WUE bit
RXx/DTx
Line
RCxIF
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4
Bit set by user
Auto-Cleared
Cleared due to user read of RCREGx
Note: The EUSART remains in Idle while the WUE bit is set.
FIGURE 19-8:
AUTO-WAKE-UP BIT (WUE) TIMINGS DURING SLEEP
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4
Q1
OSC1
WUE bit
Bit set by user
Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4
Auto-Cleared
RXx/DTx
Line
RCxIF
Sleep Command Executed
Sleep Ends
Note 1
Cleared due to user read of RCREGx
Note 1: If the wake-up event requires long oscillator warm-up time, the auto-clear of the WUE bit can occur while the stposc signal is still active.
This sequence should not depend on the presence of Q clocks.
2: The EUSART remains in Idle while the WUE bit is set.
 2003-2013 Microchip Technology Inc.
DS39612C-page 225