English
Language : 

PIC18F2331_07 Datasheet, PDF (67/400 Pages) Microchip Technology – 28/40/44-Pin Enhanced Flash Microcontrollers with nanoWatt Technology, High Performance PWM and A/D
PIC18F2331/2431/4331/4431
5.8 Look-up Tables
Look-up tables are implemented two ways:
• Computed GOTO
• Table Reads
5.8.1 COMPUTED GOTO
A computed GOTO is accomplished by adding an offset
to the program counter. An example is shown in
Example 5-4.
A look-up table can be formed with an ADDWF PCL
instruction and a group of RETLW 0xnn instructions.
WREG is loaded with an offset into the table before
executing a call to that table. The first instruction of the
called routine is the ADDWF PCL instruction. The next
instruction executed will be one of the RETLW 0xnn
instructions, which returns the value 0xnn to the calling
function.
The offset value (in WREG) specifies the number of
bytes that the program counter should advance, and
should be multiples of 2 (LSB = 0).
In this method, only one data byte may be stored in
each instruction location and room on the return
address stack is required.
EXAMPLE 5-4:
ORG
TABLE
MOVFW
CALL
0xnn00
ADDWF
RETLW
RETLW
RETLW
.
.
.
COMPUTED GOTO USING
AN OFFSET VALUE
OFFSET
TABLE
PCL
0xnn
0xnn
0xnn
5.8.2 TABLE READS/TABLE WRITES
A better method of storing data in program memory
allows two bytes of data to be stored in each instruction
location.
Look-up table data may be stored two bytes per pro-
gram word by using table reads and writes. The Table
Pointer (TBLPTR) specifies the byte address and the
Table Latch (TABLAT) contains the data that is read
from, or written to, program memory. Data is
transferred to/from program memory, one byte at a
time.
The table read/table write operation is discussed
further in Section 6.1 “Table Reads and Table
Writes”.
5.9 Data Memory Organization
The data memory is implemented as static RAM. Each
register in the data memory has a 12-bit address,
allowing up to 4096 bytes of data memory. Figure 5-6
shows the data memory organization for the
PIC18F2331/2431/4331/4431 devices.
The data memory map is divided into as many as
16 banks that contain 256 bytes each. The lower 4 bits
of the Bank Select Register (BSR<3:0>) select which
bank will be accessed. The upper 4 bits for the BSR are
not implemented.
The data memory contains Special Function Registers
(SFR) and General Purpose Registers (GPR). The
SFRs are used for control and status of the controller
and peripheral functions, while GPRs are used for data
storage and scratchpad operations in the user’s
application. The SFRs start at the last location of Bank
15 (FFFh) and extend to F60h. Any remaining space
beyond the SFRs in the bank may be implemented as
GPRs. GPRs start at the first location of Bank 0 and
grow upwards. Any read of an unimplemented location
will read as ‘0’s.
The entire data memory may be accessed directly or
indirectly. Direct Addressing mode may require the use
of the BSR register. Indirect Addressing mode requires
the use of a File Select Register (FSRn) and a
corresponding Indirect File Operand (INDFn). Each
FSR holds a 12-bit address value that can be used to
access any location in the data memory map without
banking. See Section 5.12 “Indirect Addressing,
INDF and FSR Registers” for Indirect Addressing
details.
The instruction set and architecture allow operations
across all banks. This may be accomplished by Indirect
Addressing or by the use of the MOVFF instruction. The
MOVFF instruction is a two-word/two-cycle instruction
that moves a value from one register to another.
To ensure that commonly used registers (SFRs and
select GPRs) can be accessed in a single cycle,
regardless of the current BSR values, an Access Bank
is implemented. A segment of Bank 0 and a segment of
Bank 15 comprise the Access RAM. Section 5.10
“Access Bank” provides a detailed description of the
Access RAM.
5.9.1
GENERAL PURPOSE REGISTER
FILE
Enhanced MCU devices may have banked memory in
the GPR area. GPRs are not initialized by a Power-on
Reset and are unchanged on all other Resets.
Data RAM is available for use as GPR registers by all
instructions. The second half of Bank 15 (F60h to
FFFh) contains SFRs. All other banks of data memory
contain GPRs, starting with Bank 0.
© 2007 Microchip Technology Inc.
Preliminary
DS39616C-page 65