English
Language : 

MC68HC908LB8_05 Datasheet, PDF (88/234 Pages) Freescale Semiconductor, Inc – M68HC08 Microcontrollers
Keyboard Interrupt Module (KBI)
9.4 Keyboard Initialization
When a keyboard interrupt pin is enabled, it takes time for the internal pullup to reach a logic 1. Therefore,
a false interrupt can occur as soon as the pin is enabled.
To prevent a false interrupt on keyboard initialization:
1. Mask keyboard interrupts by setting the IMASKK bit in the keyboard status and control register.
2. Enable the KBI pins by setting the appropriate KBIEx bits in the keyboard interrupt enable register.
3. Write to the ACKK bit in the keyboard status and control register to clear any false interrupts.
4. Clear the IMASKK bit.
An interrupt signal on an edge-triggered pin can be acknowledged immediately after enabling the pin. An
interrupt signal on an edge- and level-triggered interrupt pin must be acknowledged after a delay that
depends on the external load.
Another way to avoid a false interrupt:
1. Configure the keyboard pins as outputs by setting the appropriate DDRA bits in data direction
register A.
2. Write 1s to the appropriate port A data register bits.
3. Enable the KBI pins by setting the appropriate KBIEx bits in the keyboard interrupt enable register.
9.5 Low-Power Modes
The WAIT and STOP instructions put the microcontroller unit (MCU) in low power-consumption standby
modes.
9.5.1 Wait Mode
The keyboard module remains active in wait mode. Clearing the IMASKK bit in the keyboard status and
control register enables keyboard interrupt requests to bring the MCU out of wait mode.
9.5.2 Stop Mode
The keyboard module remains active in stop mode. Clearing the IMASKK bit in the keyboard status and
control register enables keyboard interrupt requests to bring the MCU out of stop mode.
9.6 Keyboard Module During Break Interrupts
The system integration module (SIM) controls whether the keyboard interrupt latch can be cleared during
the break state. The BCFE bit in the SIM break flag control register (SBFCR) enables software to clear
status bits during the break state.
To allow software to clear the keyboard interrupt latch during a break interrupt, write a 1 to the BCFE bit.
If a latch is cleared during the break state, it remains cleared when the MCU exits the break state.
To protect the latch during the break state, write a 0 to the BCFE bit. With BCFE at 0 (its default state),
writing to the keyboard acknowledge bit (ACKK) in the keyboard status and control register during the
break state has no effect. See 9.7.1 Keyboard Status and Control Register.
MC68HC908LB8 Data Sheet, Rev. 1
88
Freescale Semiconductor