English
Language : 

LM3S8G62 Datasheet, PDF (954/1096 Pages) Texas Instruments – Stellaris® LM3S8G62 Microcontroller
OBSOLETE: TI has discontinued production of this device.
Quadrature Encoder Interface (QEI)
20.4
where:
clock is the controller clock rate
ppr is the number of pulses per revolution of the physical encoder
edges is 2 or 4, based on the capture mode set in the QEICTL register (2 for CAPMODE clear and
4 for CAPMODE set)
For example, consider a motor running at 600 rpm. A 2048 pulse per revolution quadrature encoder
is attached to the motor, producing 8192 phase edges per revolution. With a velocity predivider of
÷1 (VELDIV is clear) and clocking on both PhA and PhB edges, this results in 81,920 pulses per
second (the motor turns 10 times per second). If the timer were clocked at 10,000 Hz, and the load
value was 2,500 (¼ of a second), it would count 20,480 pulses per update. Using the above equation:
rpm = (10000 * 1 * 20480 * 60) ÷ (2500 * 2048 * 4) = 600 rpm
Now, consider that the motor is sped up to 3000 rpm. This results in 409,600 pulses per second,
or 102,400 every ¼ of a second. Again, the above equation gives:
rpm = (10000 * 1 * 102400 * 60) ÷ (2500 * 2048 * 4) = 3000 rpm
Care must be taken when evaluating this equation because intermediate values may exceed the
capacity of a 32-bit integer. In the above examples, the clock is 10,000 and the divider is 2,500;
both could be predivided by 100 (at compile time if they are constants) and therefore be 100 and
25. In fact, if they were compile-time constants, they could also be reduced to a simple multiply by
4, cancelled by the ÷4 for the edge-count factor.
Important: Reducing constant factors at compile time is the best way to control the intermediate
values of this equation and reduce the processing requirement of computing this
equation.
The division can be avoided by selecting a timer load value such that the divisor is a power of 2; a
simple shift can therefore be done in place of the division. For encoders with a power of 2 pulses
per revolution, the load value can be a power of 2. For other encoders, a load value must be selected
such that the product is very close to a power of 2. For example, a 100 pulse-per-revolution encoder
could use a load value of 82, resulting in 32,800 as the divisor, which is 0.09% above 214. In this
case a shift by 15 would be an adequate approximation of the divide in most cases. If absolute
accuracy were required, the microcontroller’s divide instruction could be used.
The QEI module can produce a controller interrupt on several events: phase error, direction change,
reception of the index pulse, and expiration of the velocity timer. Standard masking, raw interrupt
status, interrupt status, and interrupt clear capabilities are provided.
Initialization and Configuration
The following example shows how to configure the Quadrature Encoder module to read back an
absolute position:
1. Enable the QEI clock by writing a value of 0x0000.0100 to the RCGC1 register in the System
Control module (see page 256).
2. Enable the clock to the appropriate GPIO module via the RCGC2 register in the System Control
module (see page 265).
3. In the GPIO module, enable the appropriate pins for their alternate function using the
GPIOAFSEL register. To determine which GPIOs to configure, see Table 22-4 on page 991.
954
July 24, 2012
Texas Instruments-Production Data