English
Language : 

PIC18F67J11-IPT Datasheet, PDF (279/448 Pages) Microchip Technology – 64/80-Pin High-Performance, 1-Mbit Flash Microcontrollers with nanoWatt Technology
PIC18F87J11 FAMILY
20.1.3 AUTO-BAUD RATE DETECT
The Enhanced USART module supports the automatic
detection and calibration of baud rate. This feature is
active only in Asynchronous mode and while the WUE
bit is clear.
The automatic baud rate measurement sequence
(Figure 20-1) begins whenever a Start bit is received
and the ABDEN bit is set. The calculation is
self-averaging.
In the Auto-Baud Rate Detect (ABD) mode, the clock to
the BRG is reversed. Rather than the BRG clocking the
incoming RXx signal, the RXx signal is timing the BRG.
In ABD mode, the internal Baud Rate Generator is
used as a counter to time the bit period of the incoming
serial byte stream.
Once the ABDEN bit is set, the state machine will clear
the BRG and look for a Start bit. The Auto-Baud Rate
Detect must receive a byte with the value 55h (ASCII
“U”, which is also the LIN bus Sync character) in order to
calculate the proper bit rate. The measurement is taken
over both a low and a high bit time in order to minimize
any effects caused by asymmetry of the incoming signal.
After a Start bit, the SPBRGx begins counting up, using
the preselected clock source on the first rising edge of
RXx. After eight bits on the RXx pin or the fifth rising
edge, an accumulated value totalling the proper BRG
period is left in the SPBRGHx:SPBRGx register pair.
Once the 5th edge is seen (this should correspond to the
Stop bit), the ABDEN bit is automatically cleared.
If a rollover of the BRG occurs (an overflow from FFFFh
to 0000h), the event is trapped by the ABDOVF status
bit (BAUDCONx<7>). It is set in hardware by BRG roll-
overs and can be set or cleared by the user in software.
ABD mode remains active after rollover events and the
ABDEN bit remains set (Figure 20-2).
While calibrating the baud rate period, the BRG regis-
ters are clocked at 1/8th the preconfigured clock rate.
Note that the BRG clock will be configured by the
BRG16 and BRGH bits. This allows the user to verify
that no carry occurred for 8-bit modes by checking for
00h in the SPBRGHx register. Refer to Table 20-4 for
counter clock rates to the BRG.
While the ABD sequence takes place, the EUSART
state machine is held in Idle. The RCxIF interrupt is set
once the fifth rising edge on RXx is detected. The value
in the RCREGx needs to be read to clear the RCxIF
interrupt. The contents of RCREGx should be
discarded.
Note 1: If the WUE bit is set with the ABDEN bit,
Auto-Baud Rate Detection will occur on
the byte following the Break character.
2: It is up to the user to determine that the
incoming character baud rate is within the
range of the selected BRG clock source.
Some combinations of oscillator frequency
and EUSART baud rates are not possible
due to bit error rates. Overall system tim-
ing and communication baud rates must
be taken into consideration when using the
Auto-Baud Rate Detection feature.
3: Ensure that BRG16 (BAUDCON<3>) is
set, to enable the auto-baud feature.
TABLE 20-4: BRG COUNTER
CLOCK RATES
BRG16 BRGH
BRG Counter Clock
0
0
1
1
Note:
0
FOSC/512
1
FOSC/128
0
FOSC/128
1
FOSC/32
During the ABD sequence, SPBRGx and
SPBRGHx are both used as a 16-bit counter,
independent of BRG16 setting.
20.1.3.1 ABD and EUSART Transmission
Since the BRG clock is reversed during ABD acquisi-
tion, the EUSART transmitter cannot be used during
ABD. This means that whenever the ABDEN bit is set,
TXREGx cannot be written to. Users should also
ensure that ABDEN does not become set during a
transmit sequence. Failing to do this may result in
unpredictable EUSART operation.
© 2009 Microchip Technology Inc.
DS39778D-page 279