English
Language : 

PIC18F67J11-IPT Datasheet, PDF (223/448 Pages) Microchip Technology – 64/80-Pin High-Performance, 1-Mbit Flash Microcontrollers with nanoWatt Technology
PIC18F87J11 FAMILY
19.0 MASTER SYNCHRONOUS
SERIAL PORT (MSSP)
MODULE
19.1 Master SSP (MSSP) Module
Overview
The Master Synchronous Serial Port (MSSP) module is
a serial interface, useful for communicating with other
peripheral or microcontroller devices. These peripheral
devices may be serial EEPROMs, shift registers,
display drivers, A/D converters, etc. The MSSP module
can operate in one of two modes:
• Serial Peripheral Interface (SPI)
• Inter-Integrated Circuit (I2C™)
- Full Master mode
- Slave mode (with general address call)
The I2C interface supports the following modes in
hardware:
• Master mode
• Multi-Master mode
• Slave mode with 5-bit and 7-bit address masking
(with address masking for both 10-bit and 7-bit
addressing)
All members of the PIC18F87J11 Family have two
MSSP modules, designated as MSSP1 and MSSP2.
Each module operates independently of the other.
Note:
Throughout this section, generic refer-
ences to an MSSP module in any of its
operating modes may be interpreted as
being equally applicable to MSSP1 or
MSSP2. Register names and module I/O
signals use the generic designator ‘x’ to
indicate the use of a numeral to distinguish
a particular module when required. Control
bit names are not individuated.
19.2 Control Registers
Each MSSP module has three associated control regis-
ters. These include a status register (SSPxSTAT) and
two control registers (SSPxCON1 and SSPxCON2). The
use of these registers and their individual configuration
bits differ significantly depending on whether the MSSP
module is operated in SPI or I2C mode.
Additional details are provided under the individual
sections.
Note:
In devices with more than one MSSP
module, it is very important to pay close
attention to SSPxCON register names.
SSP1CON1 and SSP1CON2 control
different operational aspects of the same
module, while SSP1CON1 and
SSP2CON1 control the same features for
two different modules.
19.3 SPI Mode
The SPI mode allows 8 bits of data to be synchronously
transmitted and received simultaneously. All four
modes of SPI are supported. To accomplish
communication, typically three pins are used:
• Serial Data Out (SDOx) – RC5/SDO1 or
RD4/SDO2
• Serial Data In (SDIx) – RC4/SDI1/SDA1 or
RD5/SDI2/SDA2
• Serial Clock (SCKx) – RC3/SCK1/SCL1 or
RD6/SCK2/SCL2
Additionally, a fourth pin may be used when in a Slave
mode of operation:
• Slave Select (SSx) – RF7/SS1 or RD7/SS2
Figure 19-1 shows the block diagram of the MSSP
module when operating in SPI mode.
FIGURE 19-1:
MSSP BLOCK DIAGRAM
(SPI MODE)
Internal
Data Bus
Read
Write
SSPxBUF reg
SDIx
SDOx
SSPxSR reg
bit 0
Shift
Clock
SSx
SSx Control
Enable
Edge
Select
SCKx
2
Clock Select
SSPM3:SSPM0
SMP:CKE 4
2
( ) TMR2 Output
2
Edge
Select
Prescaler TOSC
4, 16, 64
Data to TXx/RXx in SSPxSR
TRIS bit
Note: Only port I/O names are used in this diagram for
the sake of brevity. Refer to the text for a full list of
multiplexed functions.
© 2009 Microchip Technology Inc.
DS39778D-page 223