English
Language : 

PIC18F6585 Datasheet, PDF (106/496 Pages) Microchip Technology – 64/68/80-Pin High-Performance, 64-Kbyte Enhanced Flash Microcontrollers with ECAN Module
PIC18F6585/8585/6680/8680
7.5 Write Verify
Depending on the application, good programming
practice may dictate that the value written to the mem-
ory should be verified against the original value. This
should be used in applications where excessive writes
can stress bits near the specification limit.
7.6 Protection Against Spurious Write
There are conditions when the device may not want to
write to the data EEPROM memory. To protect against
spurious EEPROM writes, various mechanisms have
been built-in. On power-up, the WREN bit is cleared.
Also, the Power-up Timer (72 ms duration) prevents
EEPROM write.
The write initiate sequence and the WREN bit together
help prevent an accidental write during brown-out,
power glitch, or software malfunction.
7.7 Operation During Code-Protect
Data EEPROM memory has its own code-protect
mechanism. External read and write operations are
disabled if either of these mechanisms are enabled.
The microcontroller itself can both read and write to the
internal data EEPROM regardless of the state of the
code-protect configuration bit. Refer to Section 24.0
“Special Features of the CPU” for additional
information.
7.8 Using the Data EEPROM
The data EEPROM is a high endurance, byte address-
able array that has been optimized for the storage of
frequently changing information (e.g., program vari-
ables or other data that are updated often). Frequently
changing values will typically be updated more often
than specification D124. If this is not the case, an array
refresh must be performed. For this reason, variables
that change infrequently (such as constants, IDs,
calibration, etc.) should be stored in Flash program
memory.
A simple data EEPROM refresh routine is shown in
Example 7-3.
Note:
If data EEPROM is only used to store con-
stants and/or data that changes rarely, an
array refresh is likely not required. See
specification D124.
EXAMPLE 7-3:
Loop
CLRF
CLRF
BCF
BCF
BCF
BSF
BSF
MOVLW
MOVWF
MOVLW
MOVWF
BSF
BTFSC
BRA
INCFSZ
BRA
DATA EEPROM REFRESH ROUTINE
EEADRH
EEADR
EECON1, CFGS
EECON1, EEPGD
INTCON, GIE
EECON1, WREN
EECON1, RD
55h
EECON2
0AAh
EECON2
EECON1, WR
EECON1, WR
$-2
EEADR, F
Loop
;
; Start at address 0
; Set for memory
; Set for Data EEPROM
; Disable interrupts
; Enable writes
; Loop to refresh array
; Read current address
;
; Write 55h
;
; Write 0AAh
; Set WR bit to begin write
; Wait for write to complete
; Increment address
; Not zero, do it again
INCFS2
BRA
BCF
BSF
EEADRH, F
Loop
EECON1, WREN
INTCON, GIE
;
;
; Disable writes
; Enable interrupts
DS30491C-page 104
 2004 Microchip Technology Inc.