English
Language : 

PIC18CXX2_13 Datasheet, PDF (75/304 Pages) Microchip Technology – High Performance Microcontrollers with 10-bit A/D
PIC18CXX2
7.6 INT0 Interrupt
External interrupts on the RB0/INT0, RB1/INT1 and
RB2/INT2 pins are edge triggered: either rising, if the
corresponding INTEDGx bit is set in the INTCON2 reg-
ister, or falling, if the INTEDGx bit is clear. When a valid
edge appears on the RBx/INTx pin, the corresponding
flag bit INTxF is set. This interrupt can be disabled by
clearing the corresponding enable bit INTxE. Flag bit
INTxF must be cleared in software in the Interrupt Ser-
vice Routine before re-enabling the interrupt. All exter-
nal interrupts (INT0, INT1 and INT2) can wake-up the
processor from SLEEP, if bit INTxE was set prior to
going into SLEEP. If the global interrupt enable bit GIE
set, the processor will branch to the interrupt vector
following wake-up.
Interrupt priority for INT1 and INT2 is determined by the
value contained in the interrupt priority bits, INT1IP
(INTCON3<6>) and INT2IP (INTCON3<7>). There is
no priority bit associated with INT0. It is always a high
priority interrupt source.
7.7 TMR0 Interrupt
In 8-bit mode (which is the default), an overflow (FFh 
00h) in the TMR0 register will set flag bit TMR0IF. In
16-bit mode, an overflow (FFFFh  0000h) in the
TMR0H:TMR0L registers will set flag bit TMR0IF. The
interrupt can be enabled/disabled by setting/clearing
enable bit T0IE (INTCON<5>). Interrupt priority for
Timer0 is determined by the value contained in the
interrupt priority bit TMR0IP (INTCON2<2>). See Sec-
tion 8.0 for further details on the Timer0 module.
7.8 PORTB Interrupt-on-Change
An input change on PORTB<7:4> sets flag bit RBIF
(INTCON<0>). The interrupt can be enabled/disabled
by setting/clearing enable bit, RBIE (INTCON<3>).
Interrupt priority for PORTB Interrupt-on-change is
determined by the value contained in the interrupt pri-
ority bit, RBIP (INTCON2<0>).
7.9 Context Saving During Interrupts
During an interrupt, the return PC value is saved on the
stack. Additionally, the WREG, STATUS and BSR regis-
ters are saved on the fast return stack. If a fast return
from interrupt is not used (see Section 4.3), the user
may need to save the WREG, STATUS and BSR regis-
ters in software. Depending on the user’s application,
other registers may also need to be saved. Example 7-1
saves and restores the WREG, STATUS and BSR regis-
ters during an Interrupt Service Routine.
EXAMPLE 7-1: SAVING STATUS, WREG AND BSR REGISTERS IN RAM
MOVWF W_TEMP
MOVFF STATUS, STATUS_TEMP
MOVFF BSR, BSR_TEMP
;
; USER ISR CODE
;
MOVFF BSR_TEMP, BSR
MOVF W_TEMP, W
MOVFF STATUS_TEMP, STATUS
; W_TEMP is in virtual bank
; STATUS_TEMP located anywhere
; BSR located anywhere
; Restore BSR
; Restore WREG
; Restore STATUS
 1999-2013 Microchip Technology Inc.
DS39026D-page 75