English
Language : 

MC68HC908JW32_09 Datasheet, PDF (202/232 Pages) Freescale Semiconductor, Inc – M68HC08 Microcontrollers
Low-Voltage Inhibit (LVI)
VDD
STOP INSTRUCTION
LVISTOP
FROM CONFIG1
LVIPWRD
FROM CONFIG1
LOW VDD
DETECTOR
VDD > VTRIPR1 = 0
VDD ≤ VTRIPF1 = 1
FROM CONFIG1
LVIRSTD
LVI RESET
LVIOUT
TO LVISR
Figure 17-2. LVI Module Block Diagram
17.3.1 Low VDD Detector
The low VDD detector circuit monitors the VDD voltage and forces a LVI reset when the VDD voltage falls
below the trip voltage, VTRIPF1. The VDD LVI circuit can be disabled by the setting the LVIPWRD bit in
CONFIG1 register.
17.3.2 Polled LVI Operation
In applications that can operate at VDD levels below the VTRIPF1 level, software can monitor VDD by polling
the LVIOUT bit. In the CONFIG1 register, the LVIPWRD bit must be at logic 0 to enable the LVI module,
and the LVIRSTD bit must be at logic 1 to disable LVI resets.
17.3.3 Forced Reset Operation
In applications that require VDD to remain above the VTRIPF1 level, enabling LVI resets allows the LVI
module to reset the MCU when VDD falls below the VTRIPF1 level. In the CONFIG1 register, the LVIPWRD
and LVIRSTD bits must be at logic 0 to enable the LVI module and to enable LVI resets.
17.3.4 Voltage Hysteresis Protection
Once the LVI has triggered (by having VDD fall below VTRIPF1), the LVI will maintain a reset condition until
VDD rises above the rising trip point voltage, VTRIPR1. This prevents a condition in which the MCU is
continually entering and exiting reset if VDD is approximately equal to VTRIPF1. VTRIPR1 is greater than
VTRIPF1 by the hysteresis voltage, VHYS.
MC68HC908JW32 Data Sheet, Rev. 6
202
Freescale Semiconductor