English
Language : 

MC9S08RG60 Datasheet, PDF (80/232 Pages) Motorola, Inc – Microcontrollers
Central Processor Unit (CPU)
6.5 Special Operations
The CPU performs a few special operations that are similar to instructions but do not have opcodes like
other CPU instructions. In addition, a few instructions such as STOP and WAIT directly affect other MCU
circuitry. This section provides additional information about these operations.
6.5.1 Reset Sequence
Reset can be caused by a power-on-reset (POR) event, internal conditions such as the COP (computer
operating properly) watchdog, or by assertion of an external active-low reset pin. When a reset event
occurs, the CPU immediately stops whatever it is doing (the MCU does not wait for an instruction
boundary before responding to a reset event). For a more detailed discussion about how the MCU
recognizes resets and determines the source, refer to the Resets, Interrupts, and System Configuration
section.
The reset event is considered concluded when the sequence to determine whether the reset came from an
internal source is done and when the reset pin is no longer asserted. At the conclusion of a reset event, the
CPU performs a 6-cycle sequence to fetch the reset vector from $FFFE and $FFFF and to fill the
instruction queue in preparation for execution of the first program instruction.
6.5.2 Interrupt Sequence
When an interrupt is requested, the CPU completes the current instruction before responding to the
interrupt. At this point, the program counter is pointing at the start of the next instruction, which is where
the CPU should return after servicing the interrupt. The CPU responds to an interrupt by performing the
same sequence of operations as for a software interrupt (SWI) instruction, except the address used for the
vector fetch is determined by the highest priority interrupt that is pending when the interrupt sequence
started.
The CPU sequence for an interrupt is:
1. Store the contents of PCL, PCH, X, A, and CCR on the stack, in that order.
2. Set the I bit in the CCR.
3. Fetch the high-order half of the interrupt vector.
4. Fetch the low-order half of the interrupt vector.
5. Delay for one free bus cycle.
6. Fetch three bytes of program information starting at the address indicated by the interrupt vector to
fill the instruction queue in preparation for execution of the first instruction in the interrupt service
routine.
After the CCR contents are pushed onto the stack, the I bit in the CCR is set to prevent other interrupts
while in the interrupt service routine. Although it is possible to clear the I bit with an instruction in the
interrupt service routine, this would allow nesting of interrupts (which is not recommended because it
leads to programs that are difficult to debug and maintain).
80
MC9S08RC/RD/RE/RG
Freescale Semiconductor