English
Language : 

MC9S08RG60 Datasheet, PDF (166/232 Pages) Motorola, Inc – Microcontrollers
Serial Peripheral Interface (SPI) Module
In the case of a receive overrun, the new data is lost because the receive buffer still held the previous
character and was not ready to accept the new data. There is no indication for such an overrun condition
so the application system designer must ensure that previous data has been read from the receive buffer
before a new transfer is initiated.
12.3.1 SPI Clock Formats
To accommodate a wide variety of synchronous serial peripherals from different manufacturers, the SPI
system has a clock polarity (CPOL) bit and a clock phase (CPHA) control bit to select one of four clock
formats for data transfers. CPOL selectively inserts an inverter in series with the clock. CPHA chooses
between two different clock phase relationships between the clock and data.
Figure 12-5 shows the clock formats when CPHA = 1. At the top of the figure, the eight bit times are shown
for reference with bit 1 starting at the first SPSCK edge and bit 8 ending one-half SPSCK cycle after the
sixteenth SPSCK edge. The MSB first and LSB first lines show the order of SPI data bits depending on
the setting in LSBFE. Both variations of SPSCK polarity are shown, but only one of these waveforms
applies for a specific transfer, depending on the value in CPOL. The SAMPLE IN waveform applies to the
MOSI input of a slave or the MISO input of a master. The MOSI waveform applies to the MOSI output
pin from a master and the MISO waveform applies to the MISO output from a slave. The SS OUT
waveform applies to the slave select output from a master (provided MODFEN and SSOE = 1). The
master SS output goes to active low one-half SPSCK cycle before the start of the transfer and goes back
high at the end of the eighth bit time of the transfer. The SS IN waveform applies to the slave select input
of a slave.
166
MC9S08RC/RD/RE/RG
Freescale Semiconductor