English
Language : 

MC9S08RG60 Datasheet, PDF (59/232 Pages) Motorola, Inc – Microcontrollers
SoC Guide — MC9S08RG60/D Rev 1.10
The write to SRS that services (clears) the COP timer must not be placed in an interrupt service routine
(ISR) because the ISR could continue to be executed periodically even if the main application program
fails.
When the MCU is in active background mode, the COP timer is temporarily disabled.
5.5 Interrupts
Interrupts provide a way to save the current CPU status and registers, execute an interrupt service routine
(ISR), and then restore the CPU status so processing resumes where it was before the interrupt. Other than
the software interrupt (SWI), which is a program instruction, interrupts are caused by hardware events
such as an edge on the IRQ pin or a timer-overflow event. The debug module can also generate an SWI
under certain circumstances.
If an event occurs in an enabled interrupt source, an associated read-only status flag will become set. The
CPU will not respond until and unless the local interrupt enable is a logic 1 to enable the interrupt. The I
bit in the CCR is logic 0 to allow interrupts. The global interrupt mask (I bit) in the CCR is initially set
after reset, which masks (prevents) all maskable interrupt sources. The user program initializes the stack
pointer and performs other system setup before clearing the I bit to allow the CPU to respond to interrupts.
When the CPU receives a qualified interrupt request, it completes the current instruction before responding
to the interrupt. The interrupt sequence uses the same cycle-by-cycle sequence as the SWI instruction and
consists of:
• Saving the CPU registers on the stack
• Setting the I bit in the CCR to mask further interrupts
• Fetching the interrupt vector for the highest-priority interrupt that is currently pending
• Filling the instruction queue with the first three bytes of program information starting from the
address fetched from the interrupt vector locations
While the CPU is responding to the interrupt, the I bit is automatically set to avoid the possibility of
another interrupt interrupting the ISR itself (this is called nesting of interrupts). Normally, the I bit is
restored to 0 when the CCR is restored from the value stacked on entry to the ISR. In rare cases, the I bit
may be cleared inside an ISR (after clearing the status flag that generated the interrupt) so that other
interrupts can be serviced without waiting for the first service routine to finish. This practice is not
recommended for anyone other than the most experienced programmers because it can lead to subtle
program errors that are difficult to debug.
The interrupt service routine ends with a return-from-interrupt (RTI) instruction that restores the CCR, A,
X, and PC registers to their pre-interrupt values by reading the previously saved information off the stack.
NOTE:
For compatibility with the M68HC08 Family, the H register is not automatically
saved and restored. It is good programming practice to push H onto the stack at the
start of the interrupt service routine (ISR) and restore it just before the RTI that is
used to return from the ISR.
If two or more interrupts are pending when the I bit is cleared, the highest priority source is serviced first
(see Table 5-1).
Freescale Semiconductor
MC9S08RC/RD/RE/RG
59