English
Language : 

C8051F2XX Datasheet, PDF (83/146 Pages) Silicon Laboratories – Mixed Signal 8 kB ISP Flash MCU Family
C8051F2xx
9.5. Power Management Modes
The CIP-51 core has two software programmable power management modes: Idle and Stop. Idle mode
halts the CPU while leaving the external peripherals and internal clocks active. In Stop mode, the CPU is
halted, all interrupts and timers (except the Missing Clock Detector) are inactive, and the system clock is
stopped. Since clocks are running in Idle mode, power consumption is dependent upon the system clock
frequency and the number of peripherals left in active mode before entering Idle. Stop mode consumes
the least power. SFR Definition 9.14 describes the Power Control Register (PCON) used to control the
CIP-51’s power management modes.
Although the CIP-51 has Idle and Stop modes built in (as with any standard 8051 architecture), power
management of the entire MCU is better accomplished by enabling/disabling individual peripherals as
needed. Each analog peripheral can be disabled when not in use and put into low power mode. Turning
off the active oscillator saves even more power, but requires a reset to restart the MCU.
9.5.1. Idle Mode
Setting the Idle Mode Select bit (PCON.0) causes the CIP-51 to halt the CPU and enter Idle mode as soon
as the instruction that sets the bit completes. All internal registers and memory maintain their original
data. All analog and digital peripherals can remain active during Idle mode.
Idle mode is terminated when an enabled interrupt or RST is asserted. The assertion of an enabled inter-
rupt will cause the Idle Mode Selection bit (PCON.0) to be cleared and the CPU will resume operation.
The pending interrupt will be serviced and the next instruction to be executed after the return from interrupt
(RETI) will be the instruction immediately following the one that set the Idle Mode Select bit. If Idle mode is
terminated by an internal or external reset, the CIP-51 performs a normal reset sequence and begins pro-
gram execution at address 0x0000.
Note: If the instruction following the write of the IDLE bit is a single-byte instruction and an interrupt occurs
during the execution phase of the instruction that sets the IDLE bit, the CPU may not wake from Idle mode
when a future interrupt occurs. Any instructions that set the IDLE bit should be followed by an instruction
that has 2 or more op-code bytes, for example:
// in ‘C’:
PCON |= 0x01;
PCON = PCON;
// set IDLE bit
// ... followed by a 3-cycle dummy instruction
; in assembly:
ORL PCON, #01h
MOV PCON, PCON
; set IDLE bit
; ... followed by a 3-cycle dummy instruction
If enabled, the WDT will eventually cause an internal watchdog reset and thereby terminate the Idle mode.
This feature protects the system from an unintended permanent shutdown in the event of an inadvertent
write to the PCON register. If this behavior is not desired, the WDT may be disabled by software prior to
entering the Idle mode if the WDT was initially configured to allow this operation. This provides the oppor-
tunity for additional power savings, allowing the system to remain in the Idle mode indefinitely, waiting for
an external stimulus to wake up the system. Refer to Section 12.7 Watchdog Timer for more information
on the use and configuration of the WDT.
9.5.2. Stop Mode
Setting the Stop Mode Select bit (PCON.1) causes the CIP-51 to enter Stop mode as soon as the instruc-
tion that sets the bit completes. In Stop mode, the CPU and oscillators are stopped, effectively shutting
Rev. 1.6
83