English
Language : 

MC68HC16Z1CPV16 Datasheet, PDF (259/500 Pages) Freescale Semiconductor, Inc – Symbols and Operators, CPU16 Register Mnemonics
Freescale Semiconductor, Inc.
10.4.5.4 Parity Checking
The PT bit in SCCR1 selects either even (PT = 0) or odd (PT = 1) parity. PT affects
received and transmitted data. The PE bit in SCCR1 determines whether parity check-
ing is enabled (PE = 1) or disabled (PE = 0). When PE is set, the MSB of data in a
frame is used for the parity function. For transmitted data, a parity bit is generated for
received data; the parity bit is checked. When parity checking is enabled, the PF bit in
the SCI status register (SCSR) is set if a parity error is detected.
Enabling parity affects the number of data bits in a frame, which can in turn affect
frame size. Table 10-7 shows possible data and parity formats.
Table 10-7 Effect of Parity Checking on Data Size
M
PE
Result
0
0
8 data bits
0
1
7 data bits, 1 parity bit
1
0
9 data bits
1
1
8 data bits, 1 parity bit
10.4.5.5 Transmitter Operation
The transmitter consists of a serial shifter and a parallel data register (TDR) located in
the SCI data register (SCDR). The serial shifter cannot be directly accessed by the
CPU16. The transmitter is double-buffered, which means that data can be loaded into
the TDR while other data is shifted out. The TE bit in SCCR1 enables (TE = 1) and
disables (TE = 0) the transmitter.
Shifter output is connected to the TXD pin while the transmitter is operating (TE = 1,
or TE = 0 and transmission in progress). Wired-OR operation should be specified
when more than one transmitter is used on the same SCI bus. The WOMS bit in
SCCR1 determines whether TXD is an open-drain (wired-OR) output or a normal
CMOS output. An external pull-up resistor on TXD is necessary for wired-OR opera-
tion. WOMS controls TXD function whether the pin is used by the SCI or as a general-
purpose I/O pin.
Data to be transmitted is written to SCDR, then transferred to the serial shifter. The
transmit data register empty (TDRE) flag in SCSR shows the status of TDR. When
TDRE = 0, the TDR contains data that has not been transferred to the shifter. Writing
to SCDR again overwrites the data. TDRE is set when the data in the TDR is trans-
ferred to the shifter. Before new data can be written to the SCDR, however, the pro-
cessor must clear TDRE by writing to SCSR. If new data is written to the SCDR without
first clearing TDRE, the data will not be transmitted.
The transmission complete (TC) flag in SCSR shows transmitter shifter state. When
TC = 0, the shifter is busy. TC is set when all shifting operations are completed. TC is
not automatically cleared. The processor must clear it by first reading SCSR while TC
is set, then writing new data to SCDR.
M68HC16 Z SERIES
USER’S MANUAL
MULTICHANNEL COMMUNICATION INTERFACE
For More Information On This Product,
Go to: www.freescale.com
10-19