English
Language : 

MC68HC908GP32_08 Datasheet, PDF (186/266 Pages) Freescale Semiconductor, Inc – M68HC08 Microcontrollers
Serial Peripheral Interface Module (SPI)
Reading the SPI status and control register with SPRF set and then reading the receive data register
clears SPRF. The clearing mechanism for the SPTE flag is always just a write to the transmit data
register.
The SPI transmitter interrupt enable bit (SPTIE) enables the SPTE flag to generate transmitter CPU
interrupt requests, provided that the SPI is enabled (SPE = 1).
The SPI receiver interrupt enable bit (SPRIE) enables the SPRF bit to generate receiver CPU interrupt
requests, regardless of the state of the SPE bit. (See Figure 15-11.)
The error interrupt enable bit (ERRIE) enables both the MODF and OVRF bits to generate a receiver/error
CPU interrupt request.
The mode fault enable bit (MODFEN) can prevent the MODF flag from being set so that only the OVRF
bit is enabled by the ERRIE bit to generate receiver/error CPU interrupt requests.
SPTE SPTIE SPE
SPRIE SPRF
SPI TRANSMITTER
CPU INTERRUPT REQUEST
ERRIE
MODF
OVRF
SPI RECEIVER/ERROR
CPU INTERRUPT REQUEST
Figure 15-11. SPI Interrupt Request Generation
The following sources in the SPI status and control register can generate CPU interrupt requests:
• SPI receiver full bit (SPRF) — The SPRF bit becomes set every time a byte transfers from the shift
register to the receive data register. If the SPI receiver interrupt enable bit, SPRIE, is also set,
SPRF generates an SPI receiver/error CPU interrupt request.
• SPI transmitter empty (SPTE) — The SPTE bit becomes set every time a byte transfers from the
transmit data register to the shift register. If the SPI transmit interrupt enable bit, SPTIE, is also set,
SPTE generates an SPTE CPU interrupt request.
MC68HC908GP32 Data Sheet, Rev. 10
186
Freescale Semiconductor