English
Language : 

SMJ320C6414 Datasheet, PDF (78/133 Pages) Texas Instruments – FIXED-POINT DIGITAL SIGNAL PROCESSORS
SMJ320C6414, SMJ320C6415, SMJ320C6416
FIXEDĆPOINT DIGITAL SIGNAL PROCESSORS
SGUS050A − JANUARY 2004 − REVISED MARCH 2004
PARAMETER MEASUREMENT INFORMATION
Tester Pin Electronics
Data Sheet Timing Reference Point
42 W
4.0 pF
3.5 nH
1.85 pF
Transmission Line
Z0 = 50 W
(see note)
Output
Under
Test
Device Pin
(see note)
NOTE: The data sheet provides timing at the device pin. For output timing analysis, the tester pin electronics and its transmission line effects
must be taken into account. A transmission line with a delay of 2 ns or longer can be used to produce the desired transmission line effect.
The transmission line is intended as a load only. It is not necessary to add or subtract the transmission line delay (2 ns or longer) from
the data sheet timings.
Input requirements in this data sheet are tested with an input slew rate of < 4 Volts per nanosecond (4 V/ns) at the device pin.
Figure 12. Test Load Circuit for AC Timing Measurements
The tester load circuit is for characterization and measurement of AC timing signals. This load does not indicate
the maximum load the device is capable of driving.
signal transition levels
All input and output timing parameters are referenced to 1.5 V for both “0” and “1” logic levels.
Vref = 1.5 V
Figure 13. Input and Output Voltage Reference Levels for AC Timing Measurements
All rise and fall transition timing parameters are referenced to VIL MAX and VIH MIN for input clocks, VOL MAX
and VOH MIN for output clocks, VILP MAX and VIHP MIN for PCI input clocks, and VOLP MAX and VOHP MIN for
PCI output clocks.
Vref = VIH MIN (or VOH MIN or
VIHP MIN or VOHP MIN)
Vref = VIL MAX (or VOL MAX or
VILP MAX or VOLP MAX)
Figure 14. Rise and Fall Transition Time Voltage Reference Levels
signal transition rates
All timings are tested with an input edge rate of 4 Volts per nanosecond (4 V/ns).
78
• POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443