English
Language : 

DS80C320-MCG Datasheet, PDF (101/175 Pages) Dallas Semiconductor – High-Speed Microcontroller User Guide
High-Speed Microcontroller User’s Guide
The timing of the switchback is dependent on the source. Interrupt–initiated switchbacks will occur at the
start of the first C1 cycle following the event initiating the switchback. In PMM, each internal Cx cycle
is 16 external clock cycles for PMM1 and 256 cycles for PMM2. If the current instruction in progress is
a write to the IE, IP, EIE, or EIP registers, interrupt processing will be delayed until the completion of the
following instruction. Serial transmit-initiated switchbacks occur at the start of the instruction following
the MOV that loads SBUF0 or SBUF1. Serial reception-initiated switchbacks occur during the Cx cycle
in which the falling edge was detected. There are a few points that must be considered when using a
serial port reception to generate a switchback. Under normal circumstances, noise on the line or an
aborted transmission would cause the serial port to time-out and the data to be ignored. This presents a
problem if the switchback is used, however, because a switchback would occur but there is no indication
to the system that one has occurred. If PMM and serial port switchback functions are used in a noisy
environment, the user is advised to periodically check if the device has accidentally exited PMM.
A similar problem can occur if multiprocessor communication protocols are used in conjunction with
PMM. The High-Speed Microcontroller family supports both the use of the SM2 flag (SCON0.5 or
SCON1.5), and the slave address recognition registers (SADDR0;A9h, SADDR1;AAh, SADEN0;B9h,
SADEN1;BAh) for multiprocessor communications. The problem is that an invalid address which should
be ignored by a particular processor will still generate a switchback. As a result it is not recommended to
use a multiprocessor communication scheme in conjunction with PMM. If the system
power considerations will allow for an occasional erroneous switchback, a polling scheme can be used to
place the device back into PMM.
CLOCK SOURCE SELECTION
The High-Speed Microcontroller family supports three different clock sources for operation. As with
most microcontrollers, the device can be clocked from an external crystal using the on-board crystal
amplifier, or a clock source can supplied by an external oscillator. In addition, some members of the
High-Speed Microcontroller family incorporate an on-board ring oscillator to provide a quick resumption
from Stop mode. The ring oscillator is a low power digital oscillator internal to the microcontroller.
When enabled, it provides an approximately 2-4 MHz clock source for device operation without external
components. The ring oscillator is not as stable as an external crystal, and software should refrain from
performing timing dependent operations, including serial port activity, while operating from the ring
oscillator.
The ring oscillator provides many advantages to the designers of microcontroller-based systems. One is
that it allows Dallas Semiconductor microcontrollers to perform a fast resume from Stop mode,
eliminating the crystal warm-up delay when restarting the device. As an added feature, the DS87C520
and DS87C530 will also support extended operation from the ring oscillator, not only during the crystal
warm-up period when resuming from Stop. All devices in the High-Speed Microcontroller
family must begin operation following a power-on reset from an external clock source, either an external
crystal or oscillator. Software can then disable the crystal and run from the lower power ring oscillator.
The control and status bits which support the new and/or enhanced features are shown in Table 7-5.
101 of 175