English
Language : 

MC908JB16DWE Datasheet, PDF (240/332 Pages) Freescale Semiconductor, Inc – Microcontrollers
Serial Communications Interface
bit in SCC3 is also set. The data in the shift register is lost, but the data
already in the SCDR is not affected. Clear the OR bit by reading SCS1
with OR set and then reading the SCDR. Reset clears the OR bit.
1 = Receive shift register full and SCRF = 1
0 = No receiver overrun
Software latency may allow an overrun to occur between reads of
SCS1 and SCDR in the flag-clearing sequence. Figure 12-13 shows
the normal flag-clearing sequence and an example of an overrun
caused by a delayed flag-clearing sequence. The delayed read of
SCDR does not clear the OR bit because OR was not set when SCS1
was read. Byte 2 caused the overrun and is lost. The next flag-
clearing sequence reads byte 3 in the SCDR instead of byte 2.
In applications that are subject to software latency or in which it is
important to know which byte is lost due to an overrun, the flag-
clearing routine can check the OR bit in a second read of SCS1 after
reading the data register.
NF — Receiver Noise Flag Bit
This clearable, read-only bit is set when the SCI detects noise on the
RxD pin. NF generates an NF CPU interrupt request if the NEIE bit in
SCC3 is also set. Clear the NF bit by reading SCS1 and then reading
the SCDR. Reset clears the NF bit.
1 = Noise detected
0 = No noise detected
FE — Receiver Framing Error Bit
This clearable, read-only bit is set when a logic 0 is accepted as the
stop bit. FE generates an SCI error CPU interrupt request if the FEIE
bit in SCC3 also is set. Clear the FE bit by reading SCS1 with FE set
and then reading the SCDR. Reset clears the FE bit.
1 = Framing error detected
0 = No framing error detected
Technical Data
240
Serial Communications Interface Module (SCI)
MC68HC908JB16 — Rev. 1.1
Freescale Semiconductor