English
Language : 

PIC18F1220_07 Datasheet, PDF (16/308 Pages) Microchip Technology – 18/20/28-Pin High-Performance, Enhanced Flash Microcontrollers with 10-bit A/D and nanoWatt Technology
PIC18F1220/1320
2.6 Internal Oscillator Block
The PIC18F1220/1320 devices include an internal
oscillator block, which generates two different clock
signals; either can be used as the system’s clock
source. This can eliminate the need for external
oscillator circuits on the OSC1 and/or OSC2 pins.
The main output (INTOSC) is an 8 MHz clock source,
which can be used to directly drive the system clock. It
also drives a postscaler, which can provide a range of
clock frequencies from 125 kHz to 4 MHz. The
INTOSC output is enabled when a system clock
frequency from 125 kHz to 8 MHz is selected.
The other clock source is the internal RC oscillator
(INTRC), which provides a 31 kHz output. The INTRC
oscillator is enabled by selecting the internal oscillator
block as the system clock source, or when any of the
following are enabled:
• Power-up Timer
• Fail-Safe Clock Monitor
• Watchdog Timer
• Two-Speed Start-up
These features are discussed in greater detail in
Section 19.0 “Special Features of the CPU”.
The clock source frequency (INTOSC direct, INTRC
direct or INTOSC postscaler) is selected by configuring
the IRCF bits of the OSCCON register (Register 2-2).
2.6.1 INTIO MODES
Using the internal oscillator as the clock source can
eliminate the need for up to two external oscillator pins,
which can then be used for digital I/O. Two distinct
configurations are available:
• In INTIO1 mode, the OSC2 pin outputs FOSC/4,
while OSC1 functions as RA7 for digital input and
output.
• In INTIO2 mode, OSC1 functions as RA7 and
OSC2 functions as RA6, both for digital input and
output.
2.6.2 INTRC OUTPUT FREQUENCY
The internal oscillator block is calibrated at the factory
to produce an INTOSC output frequency of 8.0 MHz
(see Table 22-6). This changes the frequency of the
INTRC source from its nominal 31.25 kHz. Peripherals
and features that depend on the INTRC source will be
affected by this shift in frequency.
Once set during factory calibration, the INTRC
frequency will remain within ±2% as temperature and
VDD change across their full specified operating
ranges.
2.6.3 OSCTUNE REGISTER
The internal oscillator’s output has been calibrated at
the factory, but can be adjusted in the user’s applica-
tion. This is done by writing to the OSCTUNE register
(Register 2-1). The tuning sensitivity is constant
throughout the tuning range.
When the OSCTUNE register is modified, the INTOSC
and INTRC frequencies will begin shifting to the new
frequency. The INTRC clock will reach the new
frequency within 8 clock cycles (approximately
8 * 32 μs = 256 μs). The INTOSC clock will stabilize
within 1 ms. Code execution continues during this shift.
There is no indication that the shift has occurred.
Operation of features that depend on the INTRC clock
source frequency, such as the WDT, Fail-Safe Clock
Monitor and peripherals, will also be affected by the
change in frequency.
DS39605F-page 14
© 2007 Microchip Technology Inc.