English
Language : 

MC68HC16Z1 Datasheet, PDF (180/500 Pages) Freescale Semiconductor, Inc – M68HC16Z Series
Freescale Semiconductor, Inc.
6.2 SRAM Array Address Mapping
Base address registers RAMBAH and RAMBAL are used to specify the SRAM array
base address in the memory map. RAMBAH and RAMBAL can only be written while
the SRAM is in low-power stop mode (RAMMCR STOP = 1) and the base address lock
(RAMMCR RLCK = 0) is disabled. RLCK can be written once only to a value of one;
subsequent writes are ignored. This prevents accidental remapping of the array.
NOTE
In the CPU16, ADDR[23:20] follow the logic state of ADDR19. The
SRAM array must not be mapped to addresses $080000–$7FFFFF,
which are inaccessible to the CPU16. If mapped to these addresses,
the array remains inaccessible until a reset occurs, or it is remapped
outside of this range.
6.3 SRAM Array Address Space Type
The RASP[1:0] in RAMMCR determine the SRAM array address space type. The
SRAM module can respond to both program and data space accesses or to program
space accesses only. Because the CPU16 operates in supervisor mode only, RASP1
has no effect. Table 6-2 shows RASP[1:0] encodings.
Table 6-2 SRAM Array Address Space Type
RASP[1:0]
X0
X1
Space
Program and data accesses
Program access only
Refer to 5.5.1.7 Function Codes for more information concerning address space
types and program/data space access. Refer to 4.6 Addressing Modes for more in-
formation on addressing modes.
6.4 Normal Access
The array can be accessed by byte, word, or long word. A byte or aligned word access
takes one bus cycle or two system clocks. A long word or misaligned word access re-
quires two bus cycles. Refer to 5.6 Bus Operation for more information concerning
access times.
6.5 Standby and Low-Power Stop Operation
Standby and low-power modes should not be confused. Standby mode maintains the
RAM array when the main MCU power supply is turned off. Low-power stop mode al-
lows the CPU16 to control MCU power consumption by disabling unused modules.
Relative voltage levels of the MCU VDD and VSTBY pins determine whether the SRAM
is in standby mode. SRAM circuitry switches to the standby power source when VDD
drops below specified limits. If specified standby supply voltage levels are maintained
during the transition, there is no loss of memory when switching occurs. The RAM ar-
ray cannot be accessed while the SRAM module is powered from VSTBY. If standby
operation is not desired, connect the VSTBY pin to VSS.
STANDBY RAM MODULE
M68HC16 Z SERIES
6-2
For More Information On This Product,
USER’S MANUAL
Go to: www.freescale.com