English
Language : 

MC908MR16CFUE Datasheet, PDF (163/282 Pages) Freescale Semiconductor, Inc – On-chip programming firmware for use with host personal computer, Clock generator module (CGM)
Functional Description
13.3.2.4 Idle Characters
An idle character contains all 1s and has no start, stop, or parity bit. Idle character length depends on the
M bit in SCC1. The preamble is a synchronizing idle character that begins every transmission.
If the TE bit is cleared during a transmission, the PTF5/TxD pin becomes idle after completion of the
transmission in progress. Clearing and then setting the TE bit during a transmission queues an idle
character to be sent after the character currently being transmitted.
NOTE
When a break sequence is followed immediately by an idle character, this
SCI design exhibits a condition in which the break character length is
reduced by one half bit time. In this instance, the break sequence will
consist of a valid start bit, eight or nine data bits (as defined by the M bit in
SCC1) of logic 0 and one half data bit length of logic 0 in the stop bit position
followed immediately by the idle character. To ensure a break character of
the proper length is transmitted, always queue up a byte of data to be
transmitted while the final break sequence is in progress.
When queueing an idle character, return the TE bit to 1 before the stop bit
of the current character shifts out to the PTF5/TxD pin. Setting TE after the
stop bit appears on PTF5/TxD causes data previously written to the SCDR
to be lost.
A good time to toggle the TE bit is when the SCTE bit becomes set and just
before writing the next byte to the SCDR.
13.3.2.5 Inversion of Transmitted Output
The transmit inversion bit (TXINV) in SCI control register 1 (SCC1) reverses the polarity of transmitted
data. All transmitted values, including idle, break, start, and stop bits, are inverted when TXINV is at 1.
See 13.7.1 SCI Control Register 1.
13.3.2.6 Transmitter Interrupts
These conditions can generate CPU interrupt requests from the SCI transmitter:
• SCI transmitter empty (SCTE) — The SCTE bit in SCS1 indicates that the SCDR has transferred
a character to the transmit shift register. SCTE can generate a transmitter CPU interrupt request.
Setting the SCI transmit interrupt enable bit, SCTIE, in SCC2 enables the SCTE bit to generate
transmitter CPU interrupt requests.
• Transmission complete (TC) — The TC bit in SCS1 indicates that the transmit shift register and the
SCDR are empty and that no break or idle character has been generated. The transmission
complete interrupt enable bit, TCIE, in SCC2 enables the TC bit to generate transmitter CPU
interrupt requests.
13.3.3 Receiver
Figure 13-6 shows the structure of the SCI receiver.
MC68HC908MR32 • MC68HC908MR16 Data Sheet, Rev. 6.1
Freescale Semiconductor
163