English
Language : 

EP2SGX130GF1508C4 Datasheet, PDF (31/316 Pages) Altera Corporation – Section I. Stratix II GX Device Data Sheet
Altera Corporation
October 2007
Stratix II GX Architecture
Programmable Run Length Violation
The word aligner supports a programmable run length violation counter.
Whenever the number of the continuous ‘0’ (or ‘1’) exceeds a user
programmable value, the rx_rlv signal goes high for a minimum pulse
width of two recovered clock cycles. The maximum run values supported
are shown in Table 2–7.
Table 2–7. Maximum Run Length (UI)
Mode
Single-Width
Double-Width
8 Bit
128
—
PMA Serialization
10 Bit
160
—
16 Bit
—
512
20 Bit
—
640
Running Disparity Check
The running disparity error rx_disperr and running disparity value
rx_runningdisp are sent along with aligned data from the 8B/10B
decoder to the FPGA. You can ignore or act on the reported running
disparity value and running disparity error signals.
Bit-Slip Mode
The word aligner can operate in either pattern detection mode or in
bit-slip mode.
The bit-slip mode provides the option to manually shift the word
boundary through the FPGA. This feature is useful for:
■ Longer synchronization patterns than the pattern detector can
accommodate
■ Scrambled data stream
■ Input stream consisting of over-sampled data
This feature can be applied at 10-bit and 16-bit data widths.
The word aligner outputs a word boundary as it is received from the
analog receiver after reset. You can examine the word and search its
boundary in the FPGA. To do so, assert the rx_bitslip signal. The
rx_bitslip signal should be toggled and held constant for at least two
FPGA clock cycles.
For every rising edge of the rx_bitslip signal, the current word
boundary is slipped by one bit. Every time a bit is slipped, the bit received
earliest is lost. If bit slipping shifts a complete round of bus width, the
word boundary is back to the original boundary.
2–23
Stratix II GX Device Handbook, Volume 1