English
Language : 

MC9S08QG8 Datasheet, PDF (34/300 Pages) Freescale Semiconductor, Inc – 8-BIT HCS08 Central Processor Unit
Chapter 3 Modes of Operation
STOP instruction, the system clocks to the background debug logic remain active when the MCU enters
stop mode. Because of this, background debug communication remains possible. In addition, the voltage
regulator does not enter its low-power standby state but maintains full internal regulation.
Most background commands are not available in stop mode. The memory-access-with-status commands
do not allow memory access, but they report an error indicating that the MCU is in either stop or wait
mode. The BACKGROUND command can be used to wake the MCU from stop and enter active
background mode if the ENBDM bit is set. After entering background debug mode, all background
commands are available.
3.6.2 Stop2 Mode
Stop2 mode is entered by executing a STOP instruction under the conditions as shown in Table 3-1. Most
of the internal circuitry of the MCU is powered off in stop2 as in stop1 with the exception of the RAM.
Upon entering stop2, all I/O pin control signals are latched so that the pins retain their states during stop2.
Exit from stop2 is performed by asserting the wake-up pin (PTA5) on the MCU.
NOTE
PTA5/IRQ/TCLK/RESET always functions as an active-low wakeup input
when the MCU is in stop2, regardless of how the pin is configured before
entering stop2. The pullup on this pin is always disabled in stop2. This pin
must be driven or pulled high externally while in stop2 mode.
In addition, the real-time interrupt (RTI) can wake the MCU from stop2, if enabled.
Upon wake-up from stop2 mode, the MCU starts up as from a power-on reset (POR):
• All module control and status registers are reset
• The LVD reset function is enabled and the MCU remains in the reset state if VDD is below the LVD
trip point (low trip point selected due to POR)
• The CPU takes the reset vector
In addition to the above, upon waking up from stop2, the PPDF bit in SPMSC2 is set. This flag is used to
direct user code to go to a stop2 recovery routine. PPDF remains set and the I/O pin states remain latched
until a 1 is written to PPDACK in SPMSC2.
To maintain I/O states for pins that were configured as general-purpose I/O before entering stop2, the user
must restore the contents of the I/O port registers, which have been saved in RAM, to the port registers
before writing to the PPDACK bit. If the port registers are not restored from RAM before writing to
PPDACK, then the pins will switch to their reset states when PPDACK is written.
For pins that were configured as peripheral I/O, the user must reconfigure the peripheral module that
interfaces to the pin before writing to the PPDACK bit. If the peripheral module is not enabled before
writing to PPDACK, the pins will be controlled by their associated port control registers when the I/O
latches are opened.
MC9S08QG8 and MC9S08QG4 Data Sheet, Rev. 1.01
34
Freescale Semiconductor