English
Language : 

MC908AS60ACFU Datasheet, PDF (193/414 Pages) Freescale Semiconductor, Inc – M68HC08 Microcontrollers
I/O Registers
Address: $0013
Bit 7
6
5
4
3
2
1
Bit 0
Read:
LOOPS ENSCI TXINV
M
WAKE ILLTY
PEN
PTY
Write:
Reset: 0
0
0
0
0
0
0
0
Figure 18-11. SCI Control Register 1 (SCC1)
LOOPS — Loop Mode Select Bit
This read/write bit enables loop mode operation. In loop mode the RxD pin is disconnected from the
SCI, and the transmitter output goes into the receiver input. Both the transmitter and the receiver must
be enabled to use loop mode. Reset clears the LOOPS bit.
1 = Loop mode enabled
0 = Normal operation enabled
ENSCI — Enable SCI Bit
This read/write bit enables the SCI and the SCI baud rate generator. Clearing ENSCI sets the SCTE
and TC bits in SCI status register 1 and disables transmitter interrupts. Reset clears the ENSCI bit.
1 = SCI enabled
0 = SCI disabled
TXINV — Transmit Inversion Bit
This read/write bit reverses the polarity of transmitted data. Reset clears the TXINV bit.
1 = Transmitter output inverted
0 = Transmitter output not inverted
NOTE
Setting the TXINV bit inverts all transmitted values, including idle, break,
start, and stop bits.
M — Mode (Character Length) Bit
This read/write bit determines whether SCI characters are eight or nine bits long. (See Table 18-8).The
ninth bit can serve as an extra stop bit, as a receiver wakeup signal, or as a parity bit. Reset clears the
M bit.
1 = 9-bit SCI characters
0 = 8-bit SCI characters
WAKE — Wakeup Condition Bit
This read/write bit determines which condition wakes up the SCI: a logic 1 (address mark) in the most
significant bit position of a received character or an idle condition on the RxD pin. Reset clears the
WAKE bit.
1 = Address mark wakeup
0 = Idle line wakeup
ILTY — Idle Line Type Bit
This read/write bit determines when the SCI starts counting logic 1s as idle character bits. The counting
begins either after the start bit or after the stop bit. If the count begins after the start bit, then a string
of logic 1s preceding the stop bit may cause false recognition of an idle character. Beginning the count
after the stop bit avoids false idle character recognition, but requires properly synchronized
transmissions. Reset clears the ILTY bit.
1 = Idle character bit count begins after stop bit
MC68HC908AZ60A • MC68HC908AS60A • MC68HC908AS60E Data Sheet, Rev. 6
Freescale Semiconductor
193