English
Language : 

PIC24FJ16MC101_12 Datasheet, PDF (21/350 Pages) Microchip Technology – 16-bit Microcontrollers (up to 32 KB Flash and 2 KB SRAM)
PIC24FJ16MC101/102 AND PIC24FJ32MC101/102/104
2.0 GUIDELINES FOR GETTING
STARTED WITH 16-BIT
MICROCONTROLLERS
Note 1: This data sheet summarizes the features
of the PIC24FJ16MC101/102 and
PIC24FJ32MC101/102/104 family of
devices. It is not intended to be a
comprehensive reference source. To
complement the information in this data
sheet, refer to the “PIC24F Family Refer-
ence Manual”. Please see the Microchip
web site (www.microchip.com) for the lat-
est PIC24F Family Reference Manual
sections.
2: It is important to note that the
specifications in Section 26.0 “Electri-
cal Characteristics” of this data sheet,
supercede any specifications that may be
provided in PIC24F Family Reference
Manual sections.
3: Some registers and associated bits
described in this section may not be
available on all devices. Refer to
Section 4.0 “Memory Organization” in
this data sheet for device-specific register
and bit information.
2.1 Basic Connection Requirements
Getting started with the PIC24FJ16MC101/102 and
PIC24FJ32MC101/102/104 family of 16-bit
microcontrollers (MCUs) requires attention to a minimal
set of device pin connections before proceeding with
development. The following is a list of pin names, which
must always be connected:
• All VDD and VSS pins
(see Section 2.2 “Decoupling Capacitors”)
• All AVDD and AVSS pins, if present on the device
(regardless if ADC module is not used)
(see Section 2.2 “Decoupling Capacitors”)
• VCAP
(see Section 2.3 “CPU Logic Filter Capacitor
Connection (VCAP)”)
• MCLR pin
(see Section 2.4 “Master Clear (MCLR) Pin”)
• PGECx/PGEDx pins used for In-Circuit Serial
Programming™ (ICSP™) and debugging purposes
(see Section 2.5 “ICSP Pins”)
• OSC1 and OSC2 pins when external oscillator
source is used
(see Section 2.6 “External Oscillator Pins”)
2.2 Decoupling Capacitors
The use of decoupling capacitors on every pair of
power supply pins, such as VDD, VSS, AVDD, and
AVSS is required.
Consider the following criteria when using decoupling
capacitors:
• Value and type of capacitor: Recommendation
of 0.1 µF (100 nF), 10V – 20V. This capacitor
should be a low-ESR and have resonance
frequency in the range of 20 MHz and higher. It is
recommended that ceramic capacitors be used.
• Placement on the printed circuit board: The
decoupling capacitors should be placed as close
to the pins as possible. It is recommended to
place the capacitors on the same side of the
board as the device. If space is constricted, the
capacitor can be placed on another layer on the
PCB using a via; however, ensure that the trace
length from the pin to the capacitor is within
one-quarter inch (6 mm) in length.
• Handling high frequency noise: If the board is
experiencing high frequency noise, upward of
tens of MHz, add a second ceramic-type capacitor
in parallel to the above described decoupling
capacitor. The value of the second capacitor can
be in the range of 0.01 µF to 0.001 µF. Place this
second capacitor next to the primary decoupling
capacitor. In high-speed circuit designs, consider
implementing a decade pair of capacitances as
close to the power and ground pins as possible.
For example, 0.1 µF in parallel with 0.001 µF.
• Maximizing performance: On the board layout
from the power supply circuit, run the power and
return traces to the decoupling capacitors first,
and then to the device pins. This ensures that the
decoupling capacitors are first in the power chain.
Equally important is to keep the trace length
between the capacitor and the power pins to a
minimum thereby reducing PCB track inductance.
© 2011-2012 Microchip Technology Inc.
Preliminary
DS39997C-page 21