English
Language : 

PIC18F-LF1XK50 Datasheet, PDF (307/420 Pages) Microchip Technology – 20-Pin USB Flash Microcontrollers
24.3.2 DATA EEPROM
CODE PROTECTION
The entire data EEPROM is protected from external
reads and writes by two bits: CPD and WRTD. CPD
inhibits external reads and writes of data EEPROM.
WRTD inhibits internal and external writes to data
EEPROM. The CPU can always read data EEPROM
under normal operation, regardless of the protection bit
settings.
24.3.3 CONFIGURATION REGISTER
PROTECTION
The Configuration registers can be write-protected.
The WRTC bit controls protection of the Configuration
registers. In normal execution mode, the WRTC bit is
readable only. WRTC can only be written via ICSP or
an external programmer.
24.4 ID Locations
Eight memory locations (200000h-200007h) are
designated as ID locations, where the user can store
checksum or other code identification numbers. These
locations are both readable and writable during normal
execution through the TBLRD and TBLWT instructions
or during program/verify. The ID locations can be read
when the device is code-protected.
24.5 In-Circuit Serial Programming
PIC18F/LF1XK50 devices can be serially programmed
while in the end application circuit. This is simply done
with two lines for clock and data and three other lines
for power, ground and the programming voltage. This
allows customers to manufacture boards with
unprogrammed devices and then program the
microcontroller just before shipping the product. This
also allows the most recent firmware or a custom
firmware to be programmed.
24.6 In-Circuit Debugger
When the DEBUG Configuration bit is programmed to
a ‘0’, the In-Circuit Debugger functionality is enabled.
This function allows simple debugging functions when
used with MPLAB® IDE. When the microcontroller has
this feature enabled, some resources are not available
for general use. Table 24-4 shows which resources are
required by the background debugger.
TABLE 24-4: DEBUGGER RESOURCES
I/O pins:
RA0, RA1
Stack:
2 levels
Program Memory:
512 bytes
Data Memory:
10 bytes
PIC18F/LF1XK50
To use the In-Circuit Debugger function of the
microcontroller, the design must implement In-Circuit
Serial Programming connections to the following pins:
• MCLR/VPP/RA3
• VDD
• VSS
• RA0
• RA1
This will interface to the In-Circuit Debugger module
available from Microchip or one of the third party
development tool companies.
24.7 Single-Supply ICSP Programming
The LVP Configuration bit enables Single-Supply ICSP
Programming (formerly known as Low-Voltage ICSP
Programming or LVP). When Single-Supply
Programming is enabled, the microcontroller can be
programmed without requiring high voltage being
applied to the MCLR/VPP/RA3 pin, but the RC3/PGM pin
is then dedicated to controlling Program mode entry and
is not available as a general purpose I/O pin.
While programming, using Single-Supply Programming
mode, VDD is applied to the MCLR/VPP/RA3 pin as in
normal execution mode. To enter Programming mode,
VDD is applied to the PGM pin.
Note 1: High-voltage programming is always
available, regardless of the state of the
LVP bit or the PGM pin, by applying VIHH
to the MCLR pin.
2: By default, Single-Supply ICSP is
enabled in unprogrammed devices (as
supplied from Microchip) and erased
devices.
3: When Single-Supply Programming is
enabled, the RC3 pin can no longer be
used as a general purpose I/O pin.
4: When LVP is enabled, externally pull the
PGM pin to VSS to allow normal program
execution.
If Single-Supply ICSP Programming mode will not be
used, the LVP bit can be cleared. RC3/PGM then
becomes available as the digital I/O pin, RC3. The LVP
bit may be set or cleared only when using standard
high-voltage programming (VIHH applied to the MCLR/
VPP/RA3 pin). Once LVP has been disabled, only the
standard high-voltage programming is available and
must be used to program the device.
Memory that is not code-protected can be erased using
either a block erase, or erased row by row, then written
at any specified VDD. If code-protected memory is to be
erased, a block erase is required.
 2010 Microchip Technology Inc.
Preliminary
DS41350E-page 307