English
Language : 

PIC24FJ128GA310-I Datasheet, PDF (11/406 Pages) Microchip Technology – 64/80/100-Pin, General Purpose, 16-Bit Flash Microcontrollers with LCD Controller and nanoWatt XLP Technology
PIC24FJ128GA310 FAMILY
1.0 DEVICE OVERVIEW
This document contains device-specific information for
the following devices:
• PIC24FJ64GA306
• PIC24FJ64GA308
• PIC24FJ64GA310
• PIC24FJ128GA306
• PIC24FJ128GA308
• PIC24FJ128GA310
The PIC24FJ128GA310 family adds many new fea-
tures to Microchip‘s 16-bit microcontrollers, including
new ultra low-power features, Direct Memory Access
(DMA) for peripherals, and a built-in LCD Controller
and Driver. Together, these provide a wide range of
powerful features in one economical and power-saving
package.
1.1 Core Features
1.1.1 16-BIT ARCHITECTURE
Central to all PIC24F devices is the 16-bit modified
Harvard architecture, first introduced with Microchip’s
dsPIC® Digital Signal Controllers (DSCs). The PIC24F
CPU core offers a wide range of enhancements, such
as:
• 16-bit data and 24-bit address paths with the
ability to move information between data and
memory spaces
• Linear addressing of up to 12 Mbytes (program
space) and 32 Kbytes (data)
• A 16-element working register array with built-in
software stack support
• A 17 x 17 hardware multiplier with support for
integer math
• Hardware support for 32 by 16-bit division
• An instruction set that supports multiple
addressing modes and is optimized for high-level
languages, such as ‘C’
• Operational performance up to 16 MIPS
1.1.2
nanoWatt XLP POWER-SAVING
TECHNOLOGY
The PIC24FJ128GA310 family of devices introduces a
greatly-expanded range of power-saving operating
modes for the ultimate in power conservation. The new
modes include:
• Retention Sleep, with essential circuits being
powered from a separate low-voltage regulator
• Deep Sleep without RTCC, for the lowest possible
power consumption under software control
• VBAT mode (with or without RTCC), to continue
operation limited operation from a back-up battery
when VDD is removed
Many of these new low-power modes also support the
continuous operation of the low-power, on-chip
Real-Time Clock/Calendar (RTCC), making it possible
for an application to keep time while the device is
otherwise asleep.
Aside from these new features, PIC24FJ128GA310 fam-
ily devices also include all of the legacy power-saving
features of previous PIC24F microcontrollers, such as:
• On-the-Fly Clock Switching, allowing the selection
of a lower-power clock during run time
• Doze Mode Operation, for maintaining peripheral
clock speed while slowing the CPU clock
• Instruction-Based Power-Saving Modes, for quick
invocation of Idle and the many Sleep modes.
1.1.3
OSCILLATOR OPTIONS AND
FEATURES
All of the devices in the PIC24FJ128GA310 family offer
five different oscillator options, allowing users a range
of choices in developing application hardware. These
include:
• Two Crystal modes
• Two External Clock modes
• A Phase Lock Loop (PLL) frequency multiplier,
which allows clock speeds of up to 32 MHz
• A Fast Internal Oscillator (FRC) (nominal 8 MHz
output) with multiple frequency divider options
• A separate Low-Power Internal RC Oscillator
(LPRC) (31 kHz nominal) for low-power,
timing-insensitive applications.
The internal oscillator block also provides a stable
reference source for the Fail-Safe Clock Monitor
(FSCM). This option constantly monitors the main clock
source against a reference signal provided by the inter-
nal oscillator and enables the controller to switch to the
internal oscillator, allowing for continued low-speed
operation or a safe application shutdown.
1.1.4 EASY MIGRATION
Regardless of the memory size, all devices share the
same rich set of peripherals, allowing for a smooth
migration path as applications grow and evolve. The
consistent pinout scheme used throughout the entire
family also aids in migrating from one device to the next
larger, or even in jumping from 64-pin to 100-pin
devices.
The PIC24F family is pin compatible with devices in the
dsPIC33 family, and shares some compatibility with the
pinout schema for PIC18 and dsPIC30. This extends
the ability of applications to grow from the relatively
simple, to the powerful and complex, yet still selecting
a Microchip device.
 2010-2011 Microchip Technology Inc.
DS39996F-page 11