English
Language : 

SM320F28335PTPMEP Datasheet, PDF (36/167 Pages) Texas Instruments – Digital Signal Controller (DSC)
SM320F28335-EP
SPRS581D – JUNE 2009 – REVISED MAY 2012
www.ti.com
3.2 Brief Descriptions
3.2.1 C28x CPU
The C28x+FPU based controllers have the same 32-bit fixed-point architecture as TI's existing C28x
DSCs, but also include a single-precision (32-bit) IEEE 754 floating-point unit (FPU). It is a very efficient
C/C++ engine, enabling users to develop their system control software in a high-level language. It also
enables math algorithms to be developed using C/C++. The device is as efficient in DSP math tasks as it
is in system control tasks that typically are handled by microcontroller devices. This efficiency removes the
need for a second processor in many systems. The 32 x 32-bit MAC 64-bit processing capabilities enable
the controller to handle higher numerical resolution problems efficiently. Add to this the fast interrupt
response with automatic context save of critical registers, resulting in a device that is capable of servicing
many asynchronous events with minimal latency. The device has an 8-level-deep protected pipeline with
pipelined memory accesses. This pipelining enables it to execute at high speeds without resorting to
expensive high-speed memories. Special branch-look-ahead hardware minimizes the latency for
conditional discontinuities. Special store conditional operations further improve performance.
3.2.2 Memory Bus (Harvard Bus Architecture)
As with many DSC type devices, multiple busses are used to move data between the memories and
peripherals and the CPU. The C28x memory bus architecture contains a program read bus, data read bus
and data write bus. The program read bus consists of 22 address lines and 32 data lines. The data read
and write busses consist of 32 address lines and 32 data lines each. The 32-bit-wide data busses enable
single cycle 32-bit operations. The multiple bus architecture, commonly termed Harvard Bus, enables the
C28x to fetch an instruction, read a data value and write a data value in a single cycle. All peripherals and
memories attached to the memory bus will prioritize memory accesses. Generally, the priority of memory
bus accesses can be summarized as follows:
Highest: Data Writes
(Simultaneous data and program writes cannot occur on the memory
bus.)
Program Writes (Simultaneous data and program writes cannot occur on the memory
bus.)
Data Reads
Lowest:
Program
Reads
Fetches
(Simultaneous program reads and fetches cannot occur on the memory
bus.)
(Simultaneous program reads and fetches cannot occur on the memory
bus.)
3.2.3 Peripheral Bus
To enable migration of peripherals between various Texas Instruments (TI) DSC family of devices, the
F28335 adopts a peripheral bus standard for peripheral interconnect. The peripheral bus bridge
multiplexes the various busses that make up the processor Memory Bus into a single bus consisting of 16
address lines and 16 or 32 data lines and associated control signals. Three versions of the peripheral bus
are supported. One version supports only 16-bit accesses (called peripheral frame 2). Another version
supports both 16- and 32-bit accesses (called peripheral frame 1). The third version supports DMA access
and both 16- and 32-bit accesses (called peripheral frame 3).
36
Functional Overview
Copyright © 2009–2012, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): SM320F28335-EP