English
Language : 

C8051F388-B Datasheet, PDF (170/285 Pages) Silicon Laboratories – Flash MCU Family
C8051F388/9/A/B
Table 21.1. SMBus Clock Source Selection
SMBnCS1 SMBnCS0
0
0
0
1
1
0
1
1
SMBus0 Clock Source
Timer 0 Overflow
Timer 1 Overflow
Timer 2 High Byte Overflow
Timer 2 Low Byte Overflow
SMBus1 Clock Source
Timer 0 Overflow
Timer 5 Overflow
Timer 2 High Byte Overflow
Timer 2 Low Byte Overflow
The SMBnCS1–0 bits select the SMBus clock source, which is used only when operating as a master or
when the Free Timeout detection is enabled. When operating as a master, overflows from the selected
source determine the absolute minimum SCL low and high times as defined in Equation 21.1.The selected
clock source may be shared by other peripherals so long as the timer is left running at all times. For exam-
ple, Timer 1 overflows may generate the SMBus0 and SMBus1 clock rates simultaneously. Timer configu-
ration is covered in Section “25. Timers” on page 224.
THighMin
=
TLowMin
=
--------------------------------1---------------------------------
fClockSourceOverflow
Equation 21.1. Minimum SCL High and Low Times
The selected clock source should be configured to establish the minimum SCL High and Low times as per
Equation 21.1. When the interface is operating as a master (and SCL is not driven or extended by any
other devices on the bus), the typical SMBus bit rate is approximated by Equation 21.2.
BitRate = f---C----l--o----c---k---S-----o---u----r--c----e----O-----v---e----r--f--l--o---w---
3
Equation 21.2. Typical SMBus Bit Rate
Figure 21.4 shows the typical SCL generation described by Equation 21.2. Notice that THIGH is typically
twice as large as TLOW. The actual SCL output may vary due to other devices on the bus (SCL may be
extended low by slower slave devices, or driven low by contending master devices). The bit rate when
operating as a master will never exceed the limits defined by equation Equation 21.1.
Figure 21.4. Typical SMBus SCL Generation
Setting the EXTHOLD bit extends the minimum setup and hold times for the SDA line. The minimum SDA
setup time defines the absolute minimum time that SDA is stable before SCL transitions from low-to-high.
The minimum SDA hold time defines the absolute minimum time that the current SDA value remains stable
after SCL transitions from high-to-low. EXTHOLD should be set so that the minimum setup and hold times
meet the SMBus Specification requirements of 250 ns and 300 ns, respectively. Table 21.2 shows the min-
170
Rev. 1.1