English
Language : 

LM3S6110 Datasheet, PDF (161/610 Pages) Texas Instruments – Stellaris® LM3S6110 Microcontroller
Stellaris® LM3S6110 Microcontroller
4.5.2
4.5.2.1
Data Registers
The JTAG module contains six Data Registers. These include: IDCODE, BYPASS, Boundary Scan,
APACC, DPACC, and ABORT serial Data Register chains. Each of these Data Registers is discussed
in the following sections.
IDCODE Data Register
The format for the 32-bit IDCODE Data Register defined by the IEEE Standard 1149.1 is shown in
Figure 4-3 on page 161. The standard requires that every JTAG-compliant device implement either
the IDCODE instruction or the BYPASS instruction as the default instruction. The LSB of the IDCODE
Data Register is defined to be a 1 to distinguish it from the BYPASS instruction, which has an LSB
of 0. This allows auto configuration test tools to determine which instruction is the default instruction.
The major uses of the JTAG port are for manufacturer testing of component assembly, and program
development and debug. To facilitate the use of auto-configuration debug tools, the IDCODE
instruction outputs a value of 0x3BA0.0477. This allows the debuggers to automatically configure
themselves to work correctly with the Cortex-M3 during debug.
Figure 4-3. IDCODE Register Format
31
28 27
TDI
Version
Part Number
12 11
Manufacturer ID
10
1 TDO
4.5.2.2
BYPASS Data Register
The format for the 1-bit BYPASS Data Register defined by the IEEE Standard 1149.1 is shown in
Figure 4-4 on page 161. The standard requires that every JTAG-compliant device implement either
the BYPASS instruction or the IDCODE instruction as the default instruction. The LSB of the BYPASS
Data Register is defined to be a 0 to distinguish it from the IDCODE instruction, which has an LSB
of 1. This allows auto configuration test tools to determine which instruction is the default instruction.
Figure 4-4. BYPASS Register Format
0
TDI 0 TDO
4.5.2.3
Boundary Scan Data Register
The format of the Boundary Scan Data Register is shown in Figure 4-5 on page 162. Each GPIO
pin, starting with a GPIO pin next to the JTAG port pins, is included in the Boundary Scan Data
Register. Each GPIO pin has three associated digital signals that are included in the chain. These
signals are input, output, and output enable, and are arranged in that order as can be seen in the
figure.
When the Boundary Scan Data Register is accessed with the SAMPLE/PRELOAD instruction, the
input, output, and output enable from each digital pad are sampled and then shifted out of the chain
to be verified. The sampling of these values occurs on the rising edge of TCK in the Capture DR
state of the TAP controller. While the sampled data is being shifted out of the Boundary Scan chain
in the Shift DR state of the TAP controller, new data can be preloaded into the chain for use with
June 18, 2012
161
Texas Instruments-Production Data