English
Language : 

CC2510_15 Datasheet, PDF (197/245 Pages) Texas Instruments – Low-Power SoC (System-on-Chip) with MCU, Memory,2.4 GHz RF Transceiver, and USB Controller
CC2511F8 - Not Recommended for New Designs
CC2510Fx / CC2511Fx
13.10.7 Clear Channel Assessment (CCA)
The Clear Channel Assessment CCA) is used
to indicate if the current channel is free or
busy. The current CCA state is viewable on
P1_5, P1_6, or P1_7 by setting
IOCFGx.GDOx_CFG=1001.
MCSM1.CCA_MODE selects the mode to use
when determining CCA.
When the STX or SFSTXON command strobe is
given while CC2510Fx/CC2511Fx is in the RX
state, the TX or FSTXON state is only entered
if the clear channel requirements are fulfilled.
The chip will otherwise remain in RX (if the
channel becomes available, the radio will not
enter TX or FSTXON state before a new
strobe command is being issued). This feature
is called TX-if-CCA.
Four CCA requirements can be programmed:
• Always (CCA disabled, always goes to
TX)
• If RSSI is below threshold
• Unless currently receiving a packet
• Both the above (RSSI below threshold
and not currently receiving a packet)
13.10.8 Link Quality Indicator (LQI)
The Link Quality Indicator is a metric of the
current quality of the received signal. If
PKTCTRL1.APPEND_STATUS is enabled, the
value is automatically added to the last byte
appended after the payload. The value can
also be read from the LQI status register. The
LQI gives an estimate of how easily a received
signal can be demodulated by accumulating
the magnitude of the error between ideal
constellations and the received signal over the
64 symbols immediately following the sync
word. LQI is best used as a relative
measurement of the link quality (a high value
indicates a better link than what a low value
does), since the value is dependent on the
modulation format.
13.11 Forward Error Correction with Interleaving
13.11.1 Forward Error Correction (FEC)
CC2510Fx/CC2511Fx has built in support for
Forward Error Correction (FEC). To enable
this option, set MDMCFG1.FEC_EN to 1. FEC is
only supported in fixed packet length mode
(PKTCTRL0.LENGTH_CONFIG=0). FEC is
employed on the data field and CRC word in
order to reduce the gross bit error rate when
operating near the sensitivity limit.
Redundancy is added to the transmitted data
in such a way that the receiver can restore the
original data in the presence of some bit
errors.
The use of FEC allows correct reception at a
lower SNR, thus extending communication
range. Alternatively, for a given SNR, using
FEC decreases the bit error rate (BER). As the
packet error rate (PER) is related to BER by:
PER = 1 − (1 − BER) packet _ length ,
a lower BER can be used to allow longer
packets, or a higher percentage of packets of
a given length, to be transmitted successfully.
Finally, in realistic ISM radio environments,
transient and time-varying phenomena will
produce occasional errors even in otherwise
good reception conditions. FEC will mask such
errors and, combined with interleaving of the
coded data, even correct relatively long
periods of faulty reception (burst errors).
The FEC scheme adopted for
CC2510Fx/CC2511Fx is convolutional coding, in
which n bits are generated based on k input
bits and the m most recent input bits, forming
a code stream able to withstand a certain
number of bit errors between each coding
state (the m-bit window).
The convolutional coder is a rate 1/2 code with
a constraint length of m=4. The coder codes
one input bit and produces two output bits;
hence, the effective data rate is halved. I.e. to
transmit at the same effective data rate when
using FEC, it is necessary to use twice as high
over-the-air data rate. This will require a higher
receiver bandwidth, and thus reduce
sensitivity. In other words, the improved
reception by using FEC and the degraded
sensitivity from a higher receiver bandwidth
will be counteracting factors.
13.11.2 Interleaving
Data received through radio channels will
often experience burst errors due to
interference and time-varying signal strengths.
In order to increase the robustness to errors
spanning multiple bits, interleaving is used
when FEC is enabled. After de-interleaving, a
continuous span of errors in the received
stream will become single errors spread apart.
SWRS055G
Page 197 of 236